Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit e3a699e

Browse files
committed
feat(linear_algebra/determinant): Show that the determinant is a multilinear map (#5142)
1 parent 9f955fe commit e3a699e

File tree

1 file changed

+8
-0
lines changed

1 file changed

+8
-0
lines changed

src/linear_algebra/determinant.lean

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -8,6 +8,7 @@ import data.fintype.card
88
import group_theory.perm.sign
99
import algebra.algebra.basic
1010
import tactic.ring
11+
import linear_algebra.multilinear
1112

1213
universes u v w z
1314
open equiv equiv.perm finset function
@@ -273,6 +274,13 @@ begin
273274
simp [update_column_transpose, det_transpose]
274275
end
275276

277+
/-- `det` is a multilinear map over the rows of the matrix -/
278+
@[simps apply]
279+
def det_row_multilinear : multilinear_map R (λ (i : n), n → R) R :=
280+
{ to_fun := det,
281+
map_add' := det_update_row_add,
282+
map_smul' := det_update_row_smul }
283+
276284
@[simp] lemma det_block_diagonal {o : Type*} [fintype o] [decidable_eq o] (M : o → matrix n n R) :
277285
(block_diagonal M).det = ∏ k, (M k).det :=
278286
begin

0 commit comments

Comments
 (0)