Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit e3fac0b

Browse files
committed
refactor(topology/uniform_space/separated): drop is_separated (#16458)
This predicate is no longer used outside of this file. If we'll need it in the future, then we can redefine it for any topological space in terms of `inseparable`. Also rename `topology.uniform_space.compact_separated` to `topology.uniform_space.compact`.
1 parent 85c08a6 commit e3fac0b

File tree

5 files changed

+8
-95
lines changed

5 files changed

+8
-95
lines changed

src/analysis/box_integral/basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,7 +5,7 @@ Authors: Yury Kudryashov
55
-/
66
import analysis.box_integral.partition.filter
77
import analysis.box_integral.partition.measure
8-
import topology.uniform_space.compact_separated
8+
import topology.uniform_space.compact
99

1010
/-!
1111
# Integrals of Riemann, Henstock-Kurzweil, and McShane

src/topology/algebra/uniform_group.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -6,7 +6,7 @@ Authors: Patrick Massot, Johannes Hölzl
66
import topology.uniform_space.uniform_convergence
77
import topology.uniform_space.uniform_embedding
88
import topology.uniform_space.complete_separated
9-
import topology.uniform_space.compact_separated
9+
import topology.uniform_space.compact
1010
import topology.algebra.group
1111
import tactic.abel
1212

src/topology/continuous_function/compact.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
44
Authors: Scott Morrison
55
-/
66
import topology.continuous_function.bounded
7-
import topology.uniform_space.compact_separated
7+
import topology.uniform_space.compact
88
import topology.compact_open
99
import topology.sets.compacts
1010

File renamed without changes.

src/topology/uniform_space/separation.lean

Lines changed: 5 additions & 92 deletions
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,6 @@ is equivalent to asking that the uniform structure induced on `s` is separated.
3737
3838
* `separation_relation X : set (X × X)`: the separation relation
3939
* `separated_space X`: a predicate class asserting that `X` is separated
40-
* `is_separated s`: a predicate asserting that `s : set X` is separated
4140
* `separation_quotient X`: the maximal separated quotient of `X`.
4241
* `separation_quotient.lift f`: factors a map `f : X → Y` through the separation quotient of `X`.
4342
* `separation_quotient.map f`: turns a map `f : X → Y` into a map between the separation quotients
@@ -136,6 +135,11 @@ lemma eq_of_forall_symmetric {α : Type*} [uniform_space α] [separated_space α
136135
(h : ∀ {V}, V ∈ 𝓤 α → symmetric_rel V → (x, y) ∈ V) : x = y :=
137136
eq_of_uniformity_basis has_basis_symmetric (by simpa [and_imp] using λ _, h)
138137

138+
lemma eq_of_cluster_pt_uniformity [separated_space α] {x y : α} (h : cluster_pt (x, y) (𝓤 α)) :
139+
x = y :=
140+
eq_of_uniformity_basis uniformity_has_basis_closed $ λ V ⟨hV, hVc⟩,
141+
is_closed_iff_cluster_pt.1 hVc _ $ h.mono $ le_principal_iff.2 hV
142+
139143
lemma id_rel_sub_separation_relation (α : Type*) [uniform_space α] : id_rel ⊆ 𝓢 α :=
140144
begin
141145
unfold separation_rel,
@@ -235,86 +239,6 @@ lemma is_closed_range_of_spaced_out {ι} [separated_space α] {V₀ : set (α ×
235239
is_closed_of_spaced_out V₀_in $
236240
by { rintro _ ⟨x, rfl⟩ _ ⟨y, rfl⟩ h, exact hf x y (ne_of_apply_ne f h) }
237241

238-
/-!
239-
### Separated sets
240-
-/
241-
242-
/-- A set `s` in a uniform space `α` is separated if the separation relation `𝓢 α`
243-
induces the trivial relation on `s`. -/
244-
def is_separated (s : set α) : Prop := ∀ x y ∈ s, (x, y) ∈ 𝓢 α → x = y
245-
246-
lemma is_separated_def (s : set α) : is_separated s ↔ ∀ x y ∈ s, (x, y) ∈ 𝓢 α → x = y :=
247-
iff.rfl
248-
249-
lemma is_separated_def' (s : set α) : is_separated s ↔ (s ×ˢ s) ∩ 𝓢 α ⊆ id_rel :=
250-
begin
251-
rw is_separated_def,
252-
split,
253-
{ rintros h ⟨x, y⟩ ⟨⟨x_in, y_in⟩, H⟩,
254-
simp [h x x_in y y_in H] },
255-
{ intros h x x_in y y_in xy_in,
256-
rw ← mem_id_rel,
257-
exact h ⟨mk_mem_prod x_in y_in, xy_in⟩ }
258-
end
259-
260-
lemma is_separated.mono {s t : set α} (hs : is_separated s) (hts : t ⊆ s) : is_separated t :=
261-
λ x hx y hy, hs x (hts hx) y (hts hy)
262-
263-
lemma univ_separated_iff : is_separated (univ : set α) ↔ separated_space α :=
264-
begin
265-
simp only [is_separated, mem_univ, true_implies_iff, separated_space_iff],
266-
split,
267-
{ intro h,
268-
exact subset.antisymm (λ ⟨x, y⟩ xy_in, h x y xy_in) (id_rel_sub_separation_relation α), },
269-
{ intros h x y xy_in,
270-
rwa h at xy_in },
271-
end
272-
273-
lemma is_separated_of_separated_space [separated_space α] (s : set α) : is_separated s :=
274-
begin
275-
rw [is_separated, separated_space.out],
276-
tauto,
277-
end
278-
279-
lemma is_separated_iff_induced {s : set α} : is_separated s ↔ separated_space s :=
280-
begin
281-
rw separated_space_iff,
282-
change _ ↔ 𝓢 {x // x ∈ s} = _,
283-
rw [separation_rel_comap rfl, is_separated_def'],
284-
split; intro h,
285-
{ ext ⟨⟨x, x_in⟩, ⟨y, y_in⟩⟩,
286-
suffices : (x, y) ∈ 𝓢 α ↔ x = y, by simpa only [mem_id_rel],
287-
refine ⟨λ H, h ⟨mk_mem_prod x_in y_in, H⟩, _⟩,
288-
rintro rfl,
289-
exact id_rel_sub_separation_relation α rfl },
290-
{ rintros ⟨x, y⟩ ⟨⟨x_in, y_in⟩, hS⟩,
291-
have A : (⟨⟨x, x_in⟩, ⟨y, y_in⟩⟩ : ↥s × ↥s) ∈ prod.map (coe : s → α) (coe : s → α) ⁻¹' 𝓢 α,
292-
from hS,
293-
simpa using h.subset A }
294-
end
295-
296-
lemma eq_of_uniformity_inf_nhds_of_is_separated {s : set α} (hs : is_separated s) :
297-
∀ {x y : α}, x ∈ s → y ∈ s → cluster_pt (x, y) (𝓤 α) → x = y :=
298-
begin
299-
intros x y x_in y_in H,
300-
have : ∀ V ∈ 𝓤 α, (x, y) ∈ closure V,
301-
{ intros V V_in,
302-
rw mem_closure_iff_cluster_pt,
303-
have : 𝓤 α ≤ 𝓟 V, by rwa le_principal_iff,
304-
exact H.mono this },
305-
apply hs x x_in y y_in,
306-
simpa [separation_rel_eq_inter_closure],
307-
end
308-
309-
lemma eq_of_uniformity_inf_nhds [separated_space α] :
310-
∀ {x y : α}, cluster_pt (x, y) (𝓤 α) → x = y :=
311-
begin
312-
have : is_separated (univ : set α),
313-
{ rw univ_separated_iff,
314-
assumption },
315-
introv,
316-
simpa using eq_of_uniformity_inf_nhds_of_is_separated this,
317-
end
318242

319243
/-!
320244
### Separation quotient
@@ -440,11 +364,6 @@ lemma eq_of_separated_of_uniform_continuous [separated_space β] {f : α → β}
440364
(H : uniform_continuous f) (h : x ≈ y) : f x = f y :=
441365
separated_def.1 (by apply_instance) _ _ $ separated_of_uniform_continuous H h
442366

443-
lemma _root_.is_separated.eq_of_uniform_continuous {f : α → β} {x y : α} {s : set β}
444-
(hs : is_separated s) (hxs : f x ∈ s) (hys : f y ∈ s) (H : uniform_continuous f) (h : x ≈ y) :
445-
f x = f y :=
446-
(is_separated_def _).mp hs _ hxs _ hys $ λ _ h', h _ (H h')
447-
448367
/-- The maximal separated quotient of a uniform space `α`. -/
449368
def separation_quotient (α : Type*) [uniform_space α] := quotient (separation_setoid α)
450369

@@ -519,10 +438,4 @@ separated_def.2 $ assume x y H, prod.ext
519438
(eq_of_separated_of_uniform_continuous uniform_continuous_fst H)
520439
(eq_of_separated_of_uniform_continuous uniform_continuous_snd H)
521440

522-
lemma _root_.is_separated.prod {s : set α} {t : set β} (hs : is_separated s) (ht : is_separated t) :
523-
is_separated (s ×ˢ t) :=
524-
(is_separated_def _).mpr $ λ x hx y hy H, prod.ext
525-
(hs.eq_of_uniform_continuous hx.1 hy.1 uniform_continuous_fst H)
526-
(ht.eq_of_uniform_continuous hx.2 hy.2 uniform_continuous_snd H)
527-
528441
end uniform_space

0 commit comments

Comments
 (0)