Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit e4b652f

Browse files
committed
refactor(data/real/basic): rename for consistency
1 parent e7f1103 commit e4b652f

File tree

3 files changed

+2
-8
lines changed

3 files changed

+2
-8
lines changed

analysis/real.lean

Lines changed: 0 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -355,10 +355,4 @@ compact_of_totally_bounded_is_closed
355355
(real.totally_bounded_Icc a b)
356356
(is_closed_inter (is_closed_ge' a) (is_closed_le' b))
357357

358-
lemma exists_supremum_real {s : set ℝ} {a b : ℝ} (ha : a ∈ s) (hb : b ∈ upper_bounds s) :
359-
∃x, is_lub s x :=
360-
⟨real.Sup s,
361-
λ x xs, real.le_Sup s ⟨_, hb⟩ xs,
362-
λ u h, real.Sup_le_ub _ ⟨_, ha⟩ h⟩
363-
364358
end

data/real/basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -333,7 +333,7 @@ theorem le_Sup (S : set ℝ) (h₂ : ∃ x, ∀ y ∈ S, y ≤ x) {x} (xS : x
333333
theorem Sup_le_ub (S : set ℝ) (h₁ : ∃ x, x ∈ S) {ub} (h₂ : ∀ y ∈ S, y ≤ ub) : Sup S ≤ ub :=
334334
(Sup_le S h₁ ⟨_, h₂⟩).2 h₂
335335

336-
lemma Sup_is_lub {s : set ℝ} {a b : ℝ} (ha : a ∈ s) (hb : b ∈ upper_bounds s) :
336+
protected lemma is_lub_Sup {s : set ℝ} {a b : ℝ} (ha : a ∈ s) (hb : b ∈ upper_bounds s) :
337337
is_lub s (Sup s) :=
338338
⟨λ x xs, real.le_Sup s ⟨_, hb⟩ xs,
339339
λ u h, real.Sup_le_ub _ ⟨_, ha⟩ h⟩

data/real/ennreal.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -457,7 +457,7 @@ by_cases (assume h : s = ∅, ⟨0, by simp [h, is_lub, is_least, lower_bounds,
457457
assume ⟨r, ⟨hr₁, hr₂⟩, hr₃⟩, hr₃ ▸ hr₁⟩,
458458
have x ∈ of_real '' s', from s_eq ▸ hx,
459459
let ⟨x', hx', hx'_eq⟩ := this in
460-
have is_lub s' (Sup s'), from real.Sup_is_lub ‹x' ∈ s'› $
460+
have is_lub s' (Sup s'), from real.is_lub_Sup ‹x' ∈ s'› $
461461
(of_real_mem_upper_bounds s'_nn hr).mp $ s_eq ▸ hb,
462462
have 0 ≤ Sup s', from le_trans hx'.right $ this.left _ hx',
463463
⟨of_real (Sup s'), by rwa [s_eq, is_lub_of_real s'_nn this]; exact ne_empty_of_mem hx'⟩)

0 commit comments

Comments
 (0)