Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit e5acda4

Browse files
committed
chore(order/conditionally_complete_lattice): drop an unneeded nonempty assumption (#10132)
1 parent 5f2e527 commit e5acda4

File tree

1 file changed

+6
-5
lines changed

1 file changed

+6
-5
lines changed

src/order/conditionally_complete_lattice.lean

Lines changed: 6 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -516,18 +516,19 @@ theorem cinfi_eq_of_forall_ge_of_forall_gt_exists_lt [nonempty ι] {f : ι →
516516

517517
/-- Nested intervals lemma: if `f` is a monotone sequence, `g` is an antitone sequence, and
518518
`f n ≤ g n` for all `n`, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
519-
lemma monotone.csupr_mem_Inter_Icc_of_antitone [nonempty β] [semilattice_sup β]
519+
lemma monotone.csupr_mem_Inter_Icc_of_antitone [semilattice_sup β]
520520
{f g : β → α} (hf : monotone f) (hg : antitone g) (h : f ≤ g) :
521521
(⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
522522
begin
523-
inhabit β,
524-
refine mem_Inter.2 (λ n, ⟨le_csupr ⟨g $ default β, forall_range_iff.2 $ λ m, _⟩ _,
525-
csupr_le $ λ m, _⟩); exact hf.forall_le_of_antitone hg h _ _
523+
refine mem_Inter.2 (λ n, _),
524+
haveI : nonempty β := ⟨n⟩,
525+
have : ∀ m, f m ≤ g n := λ m, hf.forall_le_of_antitone hg h m n,
526+
exact ⟨le_csupr ⟨g $ n, forall_range_iff.2 this⟩ _, csupr_le this⟩
526527
end
527528

528529
/-- Nested intervals lemma: if `[f n, g n]` is an antitone sequence of nonempty
529530
closed intervals, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
530-
lemma csupr_mem_Inter_Icc_of_antitone_Icc [nonempty β] [semilattice_sup β]
531+
lemma csupr_mem_Inter_Icc_of_antitone_Icc [semilattice_sup β]
531532
{f g : β → α} (h : antitone (λ n, Icc (f n) (g n))) (h' : ∀ n, f n ≤ g n) :
532533
(⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
533534
monotone.csupr_mem_Inter_Icc_of_antitone (λ m n hmn, ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).1)

0 commit comments

Comments
 (0)