@@ -516,18 +516,19 @@ theorem cinfi_eq_of_forall_ge_of_forall_gt_exists_lt [nonempty ι] {f : ι →
516
516
517
517
/-- Nested intervals lemma: if `f` is a monotone sequence, `g` is an antitone sequence, and
518
518
`f n ≤ g n` for all `n`, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
519
- lemma monotone.csupr_mem_Inter_Icc_of_antitone [nonempty β] [ semilattice_sup β]
519
+ lemma monotone.csupr_mem_Inter_Icc_of_antitone [semilattice_sup β]
520
520
{f g : β → α} (hf : monotone f) (hg : antitone g) (h : f ≤ g) :
521
521
(⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
522
522
begin
523
- inhabit β,
524
- refine mem_Inter.2 (λ n, ⟨le_csupr ⟨g $ default β, forall_range_iff.2 $ λ m, _⟩ _,
525
- csupr_le $ λ m, _⟩); exact hf.forall_le_of_antitone hg h _ _
523
+ refine mem_Inter.2 (λ n, _),
524
+ haveI : nonempty β := ⟨n⟩,
525
+ have : ∀ m, f m ≤ g n := λ m, hf.forall_le_of_antitone hg h m n,
526
+ exact ⟨le_csupr ⟨g $ n, forall_range_iff.2 this⟩ _, csupr_le this⟩
526
527
end
527
528
528
529
/-- Nested intervals lemma: if `[f n, g n]` is an antitone sequence of nonempty
529
530
closed intervals, then `⨆ n, f n` belongs to all the intervals `[f n, g n]`. -/
530
- lemma csupr_mem_Inter_Icc_of_antitone_Icc [nonempty β] [ semilattice_sup β]
531
+ lemma csupr_mem_Inter_Icc_of_antitone_Icc [semilattice_sup β]
531
532
{f g : β → α} (h : antitone (λ n, Icc (f n) (g n))) (h' : ∀ n, f n ≤ g n) :
532
533
(⨆ n, f n) ∈ ⋂ n, Icc (f n) (g n) :=
533
534
monotone.csupr_mem_Inter_Icc_of_antitone (λ m n hmn, ((Icc_subset_Icc_iff (h' n)).1 (h hmn)).1)
0 commit comments