Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit e5c97e1

Browse files
committed
feat(analysis/convex/basic): a linear map is convex and concave (#7934)
1 parent f1f4c23 commit e5c97e1

File tree

1 file changed

+8
-0
lines changed

1 file changed

+8
-0
lines changed

src/analysis/convex/basic.lean

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1020,6 +1020,14 @@ lemma concave_on_iff_convex_hypograph {γ : Type*} [ordered_add_comm_group γ]
10201020
concave_on s f ↔ convex {p : E × γ | p.1 ∈ s ∧ p.2 ≤ f p.1} :=
10211021
@convex_on_iff_convex_epigraph _ _ _ _ (order_dual γ) _ _ _ f
10221022

1023+
/- A linear map is convex. -/
1024+
lemma linear_map.convex_on (f : E →ₗ[ℝ] β) {s : set E} (hs : convex s) : convex_on s f :=
1025+
⟨hs, λ _ _ _ _ _ _ _ _ _, by rw [f.map_add, f.map_smul, f.map_smul]⟩
1026+
1027+
/- A linear map is concave. -/
1028+
lemma linear_map.concave_on (f : E →ₗ[ℝ] β) {s : set E} (hs : convex s) : concave_on s f :=
1029+
⟨hs, λ _ _ _ _ _ _ _ _ _, by rw [f.map_add, f.map_smul, f.map_smul]⟩
1030+
10231031
/-- If a function is convex on `s`, it remains convex when precomposed by an affine map. -/
10241032
lemma convex_on.comp_affine_map {f : F → β} (g : E →ᵃ[ℝ] F) {s : set F}
10251033
(hf : convex_on s f) : convex_on (g ⁻¹' s) (f ∘ g) :=

0 commit comments

Comments
 (0)