Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit e6aa533

Browse files
committed
fix(category_theory/limits): remove an unnecessary axiom in has_image_map (#2455)
I somehow missed the fact that `has_image_map.factor_map` is actually a consequence of `has_image_map.map_ι` together with the fact that `image.ι` is always a monomorphism.
1 parent aa55f8b commit e6aa533

File tree

1 file changed

+9
-7
lines changed

1 file changed

+9
-7
lines changed

src/category_theory/limits/shapes/images.lean

Lines changed: 9 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -326,12 +326,16 @@ section has_image_map
326326
the obvious commutativity conditions. -/
327327
class has_image_map {f g : arrow C} [has_image f.hom] [has_image g.hom] (sq : f ⟶ g) :=
328328
(map : image f.hom ⟶ image g.hom)
329-
(factor_map' : factor_thru_image f.hom ≫ map = sq.left ≫ factor_thru_image g.hom . obviously)
330329
(map_ι' : map ≫ image.ι g.hom = image.ι f.hom ≫ sq.right . obviously)
331330

332-
restate_axiom has_image_map.factor_map'
333331
restate_axiom has_image_map.map_ι'
334-
attribute [simp, reassoc] has_image_map.factor_map has_image_map.map_ι
332+
attribute [simp, reassoc] has_image_map.map_ι
333+
334+
@[simp, reassoc]
335+
lemma has_image_map.factor_map {f g : arrow C} [has_image f.hom] [has_image g.hom] (sq : f ⟶ g)
336+
[has_image_map sq] :
337+
factor_thru_image f.hom ≫ has_image_map.map sq = sq.left ≫ factor_thru_image g.hom :=
338+
(cancel_mono (image.ι g.hom)).1 $ by simp [arrow.w]
335339

336340
variables {f g : arrow C} [has_image f.hom] [has_image g.hom] (sq : f ⟶ g)
337341

@@ -485,8 +489,8 @@ instance has_image_maps_of_has_strong_epi_images [has_strong_epi_images.{v} C] :
485489
has_image_maps.{v} C :=
486490
{ has_image_map := λ f g st,
487491
let I := image (image.ι f.hom ≫ st.right) in
488-
let I' := image (st.left ≫ factor_thru_image g.hom),
489-
upper : strong_epi_mono_factorisation (f.hom ≫ st.right) :=
492+
let I' := image (st.left ≫ factor_thru_image g.hom) in
493+
let upper : strong_epi_mono_factorisation (f.hom ≫ st.right) :=
490494
{ I := I,
491495
e := factor_thru_image f.hom ≫ factor_thru_image (image.ι f.hom ≫ st.right),
492496
m := image.ι (image.ι f.hom ≫ st.right),
@@ -502,8 +506,6 @@ instance has_image_maps_of_has_strong_epi_images [has_strong_epi_images.{v} C] :
502506
let s : I ⟶ I' := is_image.lift upper.to_mono_is_image lower.to_mono_factorisation in
503507
{ map := factor_thru_image (image.ι f.hom ≫ st.right) ≫ s ≫
504508
image.ι (st.left ≫ factor_thru_image g.hom),
505-
factor_map' := by rw [←category.assoc, ←category.assoc,
506-
is_image.fac_lift upper.to_mono_is_image lower.to_mono_factorisation, image.fac],
507509
map_ι' := by rw [category.assoc, category.assoc,
508510
is_image.lift_fac upper.to_mono_is_image lower.to_mono_factorisation, image.fac] } }
509511

0 commit comments

Comments
 (0)