Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit e7c7552

Browse files
rwbartonjohoelzl
authored andcommitted
feat(analysis/topology/continuity): compactness and embeddings
1 parent ab20b5f commit e7c7552

File tree

1 file changed

+28
-0
lines changed

1 file changed

+28
-0
lines changed

analysis/topology/continuity.lean

Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -335,6 +335,24 @@ lemma embedding.continuous_iff {f : α → β} {g : β → γ} (hg : embedding g
335335
continuous f ↔ continuous (g ∘ f) :=
336336
by simp [continuous_iff_tendsto, embedding.tendsto_nhds_iff hg]
337337

338+
lemma embedding.continuous {f : α → β} (hf : embedding f) : continuous f :=
339+
hf.continuous_iff.mp continuous_id
340+
341+
lemma compact_iff_compact_image_of_embedding {s : set α} {f : α → β} (hf : embedding f) :
342+
compact s ↔ compact (f '' s) :=
343+
iff.intro (assume h, compact_image h hf.continuous) $ assume h, begin
344+
rw compact_iff_ultrafilter_le_nhds at ⊢ h,
345+
intros u hu us',
346+
let u' : filter β := map f u,
347+
have : u' ≤ principal (f '' s), begin
348+
rw [map_le_iff_le_comap, comap_principal], convert us',
349+
exact preimage_image_eq _ hf.1
350+
end,
351+
rcases h u' (ultrafilter_map hu) this with ⟨_, ⟨a, ha, ⟨⟩⟩, _⟩,
352+
refine ⟨a, ha, _⟩,
353+
rwa [hf.2, nhds_induced_eq_comap, ←map_le_iff_le_comap]
354+
end
355+
338356
end embedding
339357

340358
section quotient_map
@@ -366,6 +384,9 @@ lemma quotient_map.continuous_iff {f : α → β} {g : β → γ} (hf : quotient
366384
continuous g ↔ continuous (g ∘ f) :=
367385
by rw [continuous_iff_le_coinduced, continuous_iff_le_coinduced, hf.right, coinduced_compose]
368386

387+
lemma quotient_map.continuous {f : α → β} (hf : quotient_map f) : continuous f :=
388+
hf.continuous_iff.mp continuous_id
389+
369390
end quotient_map
370391

371392
section sierpinski
@@ -721,6 +742,13 @@ lemma closure_subtype {x : {a // p a}} {s : set {a // p a}}:
721742
x ∈ closure s ↔ x.val ∈ closure (subtype.val '' s) :=
722743
closure_induced $ assume x y, subtype.eq
723744

745+
lemma compact_iff_compact_in_subtype {s : set {a // p a}} :
746+
compact s ↔ compact (subtype.val '' s) :=
747+
compact_iff_compact_image_of_embedding embedding_subtype_val
748+
749+
lemma compact_iff_compact_univ {s : set α} : compact s ↔ compact (univ : set (subtype s)) :=
750+
by rw [compact_iff_compact_in_subtype, image_univ, subtype_val_range]; refl
751+
724752
end subtype
725753

726754
section quotient

0 commit comments

Comments
 (0)