This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +30
-0
lines changed Expand file tree Collapse file tree 1 file changed +30
-0
lines changed Original file line number Diff line number Diff line change @@ -1749,4 +1749,34 @@ def quot_quot_equiv_quot_sup : (J.map (ideal.quotient.mk I)).quotient ≃+* (I
1749
1749
ring_equiv.of_hom_inv (quot_quot_to_quot_sup I J) (lift_sup_quot_quot_mk I J)
1750
1750
(by { ext z, refl }) (by { ext z, refl })
1751
1751
1752
+ @[simp]
1753
+ lemma quot_quot_equiv_quot_sup_quot_quot_mk (x : R) :
1754
+ quot_quot_equiv_quot_sup I J (quot_quot_mk I J x) = ideal.quotient.mk (I ⊔ J) x :=
1755
+ rfl
1756
+
1757
+ @[simp]
1758
+ lemma quot_quot_equiv_quot_sup_symm_quot_quot_mk (x : R) :
1759
+ (quot_quot_equiv_quot_sup I J).symm (ideal.quotient.mk (I ⊔ J) x) = quot_quot_mk I J x :=
1760
+ rfl
1761
+
1762
+ /-- The obvious isomorphism `(R/I)/J' → (R/J)/I' ` -/
1763
+ def quot_quot_equiv_comm : (J.map I^.quotient.mk).quotient ≃+* (I.map J^.quotient.mk).quotient :=
1764
+ ((quot_quot_equiv_quot_sup I J).trans (quot_equiv_of_eq sup_comm)).trans
1765
+ (quot_quot_equiv_quot_sup J I).symm
1766
+
1767
+ @[simp]
1768
+ lemma quot_quot_equiv_comm_quot_quot_mk (x : R) :
1769
+ quot_quot_equiv_comm I J (quot_quot_mk I J x) = quot_quot_mk J I x :=
1770
+ rfl
1771
+
1772
+ @[simp]
1773
+ lemma quot_quot_equiv_comm_comp_quot_quot_mk :
1774
+ ring_hom.comp ↑(quot_quot_equiv_comm I J) (quot_quot_mk I J) = quot_quot_mk J I :=
1775
+ ring_hom.ext $ quot_quot_equiv_comm_quot_quot_mk I J
1776
+
1777
+ @[simp]
1778
+ lemma quot_quot_equiv_comm_symm :
1779
+ (quot_quot_equiv_comm I J).symm = quot_quot_equiv_comm J I :=
1780
+ rfl
1781
+
1752
1782
end double_quot
You can’t perform that action at this time.
0 commit comments