Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit e8427b0

Browse files
committed
feat(ring_theory/ideal/operation): add some extra definitions in the double_quot section (#9649)
1 parent a7ec633 commit e8427b0

File tree

1 file changed

+30
-0
lines changed

1 file changed

+30
-0
lines changed

src/ring_theory/ideal/operations.lean

Lines changed: 30 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1749,4 +1749,34 @@ def quot_quot_equiv_quot_sup : (J.map (ideal.quotient.mk I)).quotient ≃+* (I
17491749
ring_equiv.of_hom_inv (quot_quot_to_quot_sup I J) (lift_sup_quot_quot_mk I J)
17501750
(by { ext z, refl }) (by { ext z, refl })
17511751

1752+
@[simp]
1753+
lemma quot_quot_equiv_quot_sup_quot_quot_mk (x : R) :
1754+
quot_quot_equiv_quot_sup I J (quot_quot_mk I J x) = ideal.quotient.mk (I ⊔ J) x :=
1755+
rfl
1756+
1757+
@[simp]
1758+
lemma quot_quot_equiv_quot_sup_symm_quot_quot_mk (x : R) :
1759+
(quot_quot_equiv_quot_sup I J).symm (ideal.quotient.mk (I ⊔ J) x) = quot_quot_mk I J x :=
1760+
rfl
1761+
1762+
/-- The obvious isomorphism `(R/I)/J' → (R/J)/I' ` -/
1763+
def quot_quot_equiv_comm : (J.map I^.quotient.mk).quotient ≃+* (I.map J^.quotient.mk).quotient :=
1764+
((quot_quot_equiv_quot_sup I J).trans (quot_equiv_of_eq sup_comm)).trans
1765+
(quot_quot_equiv_quot_sup J I).symm
1766+
1767+
@[simp]
1768+
lemma quot_quot_equiv_comm_quot_quot_mk (x : R) :
1769+
quot_quot_equiv_comm I J (quot_quot_mk I J x) = quot_quot_mk J I x :=
1770+
rfl
1771+
1772+
@[simp]
1773+
lemma quot_quot_equiv_comm_comp_quot_quot_mk :
1774+
ring_hom.comp ↑(quot_quot_equiv_comm I J) (quot_quot_mk I J) = quot_quot_mk J I :=
1775+
ring_hom.ext $ quot_quot_equiv_comm_quot_quot_mk I J
1776+
1777+
@[simp]
1778+
lemma quot_quot_equiv_comm_symm :
1779+
(quot_quot_equiv_comm I J).symm = quot_quot_equiv_comm J I :=
1780+
rfl
1781+
17521782
end double_quot

0 commit comments

Comments
 (0)