@@ -1364,9 +1364,9 @@ begin
1364
1364
rw [A, B, C, add_assoc],
1365
1365
end
1366
1366
1367
- section metric_space
1367
+ section pseudo_metric_space
1368
1368
1369
- variables [metric_space α] [measurable_space α] [opens_measurable_space α]
1369
+ variables [pseudo_metric_space α] [measurable_space α] [opens_measurable_space α]
1370
1370
variables [measurable_space β] {x : α} {ε : ℝ}
1371
1371
1372
1372
open metric
@@ -1448,19 +1448,20 @@ begin
1448
1448
exact h's.closure_eq.symm
1449
1449
end
1450
1450
1451
+ end pseudo_metric_space
1452
+
1451
1453
/-- Given a compact set in a proper space, the measure of its `r`-closed thickenings converges to
1452
1454
its measure as `r` tends to `0`. -/
1453
- lemma tendsto_measure_cthickening_of_is_compact [proper_space α] {μ : measure α}
1455
+ lemma tendsto_measure_cthickening_of_is_compact [metric_space α] [measurable_space α]
1456
+ [opens_measurable_space α] [proper_space α] {μ : measure α}
1454
1457
[is_finite_measure_on_compacts μ] {s : set α} (hs : is_compact s) :
1455
- tendsto (λ r, μ (cthickening r s)) (𝓝 0 ) (𝓝 (μ s)) :=
1458
+ tendsto (λ r, μ (metric. cthickening r s)) (𝓝 0 ) (𝓝 (μ s)) :=
1456
1459
tendsto_measure_cthickening_of_is_closed
1457
- ⟨1 , zero_lt_one, (bounded.measure_lt_top hs.bounded.cthickening) .ne⟩ hs.is_closed
1460
+ ⟨1 , zero_lt_one, hs.bounded.cthickening.measure_lt_top .ne⟩ hs.is_closed
1458
1461
1459
- end metric_space
1462
+ section pseudo_emetric_space
1460
1463
1461
- section emetric_space
1462
-
1463
- variables [emetric_space α] [measurable_space α] [opens_measurable_space α]
1464
+ variables [pseudo_emetric_space α] [measurable_space α] [opens_measurable_space α]
1464
1465
variables [measurable_space β] {x : α} {ε : ℝ≥0 ∞}
1465
1466
1466
1467
open emetric
@@ -1502,7 +1503,7 @@ lemma ae_measurable.edist {f g : β → α} {μ : measure β}
1502
1503
(hf : ae_measurable f μ) (hg : ae_measurable g μ) : ae_measurable (λ a, edist (f a) (g a)) μ :=
1503
1504
(@continuous_edist α _).ae_measurable2 hf hg
1504
1505
1505
- end emetric_space
1506
+ end pseudo_emetric_space
1506
1507
1507
1508
namespace real
1508
1509
open measurable_space measure_theory
@@ -1846,7 +1847,7 @@ end normed_group
1846
1847
1847
1848
section limits
1848
1849
1849
- variables [measurable_space β] [metric_space β] [borel_space β]
1850
+ variables [topological_space β] [pseudo_metrizable_space β] [measurable_space β] [borel_space β]
1850
1851
1851
1852
open metric
1852
1853
@@ -1885,13 +1886,14 @@ lemma measurable_of_tendsto_nnreal {f : ℕ → α → ℝ≥0} {g : α → ℝ
1885
1886
(hf : ∀ i, measurable (f i)) (lim : tendsto f at_top (𝓝 g)) : measurable g :=
1886
1887
measurable_of_tendsto_nnreal' at_top hf lim
1887
1888
1888
- /-- A limit (over a general filter) of measurable functions valued in a metric space is measurable.
1889
- -/
1890
- lemma measurable_of_tendsto_metric ' {ι} {f : ι → α → β} {g : α → β}
1889
+ /-- A limit (over a general filter) of measurable functions valued in a (pseudo) metrizable space is
1890
+ measurable. -/
1891
+ lemma measurable_of_tendsto_metrizable ' {ι} {f : ι → α → β} {g : α → β}
1891
1892
(u : filter ι) [ne_bot u] [is_countably_generated u]
1892
1893
(hf : ∀ i, measurable (f i)) (lim : tendsto f u (𝓝 g)) :
1893
1894
measurable g :=
1894
1895
begin
1896
+ letI : pseudo_metric_space β := pseudo_metrizable_space_pseudo_metric β,
1895
1897
apply measurable_of_is_closed', intros s h1s h2s h3s,
1896
1898
have : measurable (λ x, inf_nndist (g x) s),
1897
1899
{ suffices : tendsto (λ i x, inf_nndist (f i x) s) u (𝓝 (λ x, inf_nndist (g x) s)),
@@ -1903,33 +1905,14 @@ begin
1903
1905
rw [h4s], exact this (measurable_set_singleton 0 ),
1904
1906
end
1905
1907
1906
- /-- A sequential limit of measurable functions valued in a metric space is measurable. -/
1907
- lemma measurable_of_tendsto_metric {f : ℕ → α → β} {g : α → β}
1908
- (hf : ∀ i, measurable (f i)) (lim : tendsto f at_top (𝓝 g)) :
1909
- measurable g :=
1910
- measurable_of_tendsto_metric' at_top hf lim
1911
-
1912
- /-- A limit (over a general filter) of measurable functions valued in a metrizable space is
1908
+ /-- A sequential limit of measurable functions valued in a (pseudo) metrizable space is
1913
1909
measurable. -/
1914
- lemma measurable_of_tendsto_metrizable'
1915
- {β : Type *} [topological_space β] [metrizable_space β]
1916
- [measurable_space β] [borel_space β] {ι} {f : ι → α → β} {g : α → β}
1917
- (u : filter ι) [ne_bot u] [is_countably_generated u]
1918
- (hf : ∀ i, measurable (f i)) (lim : tendsto f u (𝓝 g)) :
1919
- measurable g :=
1920
- begin
1921
- letI : metric_space β := metrizable_space_metric β,
1922
- exact measurable_of_tendsto_metric' u hf lim
1923
- end
1924
-
1925
- /-- A sequential limit of measurable functions valued in a metrizable space is measurable. -/
1926
- lemma measurable_of_tendsto_metrizable {β : Type *} [topological_space β] [metrizable_space β]
1927
- [measurable_space β] [borel_space β] {f : ℕ → α → β} {g : α → β}
1910
+ lemma measurable_of_tendsto_metrizable {f : ℕ → α → β} {g : α → β}
1928
1911
(hf : ∀ i, measurable (f i)) (lim : tendsto f at_top (𝓝 g)) :
1929
1912
measurable g :=
1930
1913
measurable_of_tendsto_metrizable' at_top hf lim
1931
1914
1932
- lemma ae_measurable_of_tendsto_metric_ae {ι : Type *}
1915
+ lemma ae_measurable_of_tendsto_metrizable_ae {ι : Type *}
1933
1916
{μ : measure α} {f : ι → α → β} {g : α → β}
1934
1917
(u : filter ι) [hu : ne_bot u] [is_countably_generated u]
1935
1918
(hf : ∀ n, ae_measurable (f n) μ) (h_tendsto : ∀ᵐ x ∂μ, tendsto (λ n, f n x) u (𝓝 (g x))) :
@@ -1941,8 +1924,7 @@ begin
1941
1924
have hp : ∀ᵐ x ∂μ, p x (λ n, f (v n) x),
1942
1925
by filter_upwards [h_tendsto] with x hx using hx.comp hv,
1943
1926
set ae_seq_lim := λ x, ite (x ∈ ae_seq_set h'f p) (g x) (⟨f (v 0 ) x⟩ : nonempty β).some with hs,
1944
- refine ⟨ae_seq_lim,
1945
- measurable_of_tendsto_metric' at_top (@ae_seq.measurable α β _ _ _ (λ n x, f (v n) x) μ h'f p)
1927
+ refine ⟨ae_seq_lim, measurable_of_tendsto_metrizable' at_top (ae_seq.measurable h'f p)
1946
1928
(tendsto_pi_nhds.mpr (λ x, _)), _⟩,
1947
1929
{ simp_rw [ae_seq, ae_seq_lim],
1948
1930
split_ifs with hx,
@@ -1953,13 +1935,14 @@ begin
1953
1935
(ae_seq_set h'f p) (ae_seq.measure_compl_ae_seq_set_eq_zero h'f hp)).symm },
1954
1936
end
1955
1937
1956
- lemma ae_measurable_of_tendsto_metric_ae ' {μ : measure α} {f : ℕ → α → β} {g : α → β}
1938
+ lemma ae_measurable_of_tendsto_metrizable_ae ' {μ : measure α} {f : ℕ → α → β} {g : α → β}
1957
1939
(hf : ∀ n, ae_measurable (f n) μ)
1958
1940
(h_ae_tendsto : ∀ᵐ x ∂μ, tendsto (λ n, f n x) at_top (𝓝 (g x))) :
1959
1941
ae_measurable g μ :=
1960
- ae_measurable_of_tendsto_metric_ae at_top hf h_ae_tendsto
1942
+ ae_measurable_of_tendsto_metrizable_ae at_top hf h_ae_tendsto
1961
1943
1962
- lemma ae_measurable_of_unif_approx {μ : measure α} {g : α → β}
1944
+ lemma ae_measurable_of_unif_approx {β} [measurable_space β] [pseudo_metric_space β] [borel_space β]
1945
+ {μ : measure α} {g : α → β}
1963
1946
(hf : ∀ ε > (0 : ℝ), ∃ (f : α → β), ae_measurable f μ ∧ ∀ᵐ x ∂μ, dist (f x) (g x) ≤ ε) :
1964
1947
ae_measurable g μ :=
1965
1948
begin
@@ -1973,17 +1956,17 @@ begin
1973
1956
assume x hx,
1974
1957
rw tendsto_iff_dist_tendsto_zero,
1975
1958
exact squeeze_zero (λ n, dist_nonneg) hx u_lim },
1976
- exact ae_measurable_of_tendsto_metric_ae ' (λ n, (Hf n).1 ) this ,
1959
+ exact ae_measurable_of_tendsto_metrizable_ae ' (λ n, (Hf n).1 ) this ,
1977
1960
end
1978
1961
1979
- lemma measurable_of_tendsto_metric_ae {μ : measure α} [μ.is_complete] {f : ℕ → α → β} {g : α → β}
1980
- (hf : ∀ n, measurable (f n))
1962
+ lemma measurable_of_tendsto_metrizable_ae {μ : measure α} [μ.is_complete] {f : ℕ → α → β}
1963
+ {g : α → β} (hf : ∀ n, measurable (f n))
1981
1964
(h_ae_tendsto : ∀ᵐ x ∂μ, tendsto (λ n, f n x) at_top (𝓝 (g x))) :
1982
1965
measurable g :=
1983
1966
ae_measurable_iff_measurable.mp
1984
- (ae_measurable_of_tendsto_metric_ae ' (λ i, (hf i).ae_measurable) h_ae_tendsto)
1967
+ (ae_measurable_of_tendsto_metrizable_ae ' (λ i, (hf i).ae_measurable) h_ae_tendsto)
1985
1968
1986
- lemma measurable_limit_of_tendsto_metric_ae {ι} [encodable ι] [nonempty ι] {μ : measure α}
1969
+ lemma measurable_limit_of_tendsto_metrizable_ae {ι} [encodable ι] [nonempty ι] {μ : measure α}
1987
1970
{f : ι → α → β} {L : filter ι} [L.is_countably_generated] (hf : ∀ n, ae_measurable (f n) μ)
1988
1971
(h_ae_tendsto : ∀ᵐ x ∂μ, ∃ l : β, tendsto (λ n, f n x) L (𝓝 l)) :
1989
1972
∃ (f_lim : α → β) (hf_lim_meas : measurable f_lim),
@@ -2011,7 +1994,7 @@ begin
2011
1994
have h_ae_tendsto_f_lim : ∀ᵐ x ∂μ, tendsto (λ n, f n x) L (𝓝 (f_lim x)),
2012
1995
from h_ae_eq.mono (λ x hx, (hf_lim x).congr hx),
2013
1996
have h_f_lim_meas : measurable f_lim,
2014
- from measurable_of_tendsto_metric ' L (ae_seq.measurable hf p)
1997
+ from measurable_of_tendsto_metrizable ' L (ae_seq.measurable hf p)
2015
1998
(tendsto_pi_nhds.mpr (λ x, hf_lim x)),
2016
1999
exact ⟨f_lim, h_f_lim_meas, h_ae_tendsto_f_lim⟩,
2017
2000
end
0 commit comments