@@ -378,15 +378,26 @@ end
378
378
379
379
variables {α' : Type *} [topological_space α'] [measurable_space α']
380
380
381
- lemma measure_interior_of_null_bdry {μ : measure α'} {s : set α'}
382
- (h_nullbdry : μ (frontier s) = 0 ) : μ (interior s) = μ s :=
383
- measure_eq_measure_smaller_of_between_null_diff
384
- interior_subset subset_closure h_nullbdry
385
-
386
- lemma measure_closure_of_null_bdry {μ : measure α'} {s : set α'}
387
- (h_nullbdry : μ (frontier s) = 0 ) : μ (closure s) = μ s :=
388
- (measure_eq_measure_larger_of_between_null_diff
389
- interior_subset subset_closure h_nullbdry).symm
381
+ lemma interior_ae_eq_of_null_frontier {μ : measure α'} {s : set α'}
382
+ (h : μ (frontier s) = 0 ) : interior s =ᵐ[μ] s :=
383
+ interior_subset.eventually_le.antisymm $
384
+ subset_closure.eventually_le.trans (ae_le_set.2 h)
385
+
386
+ lemma measure_interior_of_null_frontier {μ : measure α'} {s : set α'}
387
+ (h : μ (frontier s) = 0 ) : μ (interior s) = μ s :=
388
+ measure_congr (interior_ae_eq_of_null_frontier h)
389
+
390
+ lemma null_measurable_set_of_null_frontier {s : set α} {μ : measure α}
391
+ (h : μ (frontier s) = 0 ) : null_measurable_set s μ :=
392
+ ⟨interior s, is_open_interior.measurable_set, (interior_ae_eq_of_null_frontier h).symm⟩
393
+
394
+ lemma closure_ae_eq_of_null_frontier {μ : measure α'} {s : set α'}
395
+ (h : μ (frontier s) = 0 ) : closure s =ᵐ[μ] s :=
396
+ ((ae_le_set.2 h).trans interior_subset.eventually_le).antisymm $ subset_closure.eventually_le
397
+
398
+ lemma measure_closure_of_null_frontier {μ : measure α'} {s : set α'}
399
+ (h : μ (frontier s) = 0 ) : μ (closure s) = μ s :=
400
+ measure_congr (closure_ae_eq_of_null_frontier h)
390
401
391
402
section preorder
392
403
variables [preorder α] [order_closed_topology α] {a b x : α}
0 commit comments