Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit ebbe763

Browse files
committed
feat(measure_theory/constructions/borel_space): a set with μ (∂ s) = 0 is null measurable (#13322)
1 parent 7e69148 commit ebbe763

File tree

1 file changed

+20
-9
lines changed

1 file changed

+20
-9
lines changed

src/measure_theory/constructions/borel_space.lean

Lines changed: 20 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -378,15 +378,26 @@ end
378378

379379
variables {α' : Type*} [topological_space α'] [measurable_space α']
380380

381-
lemma measure_interior_of_null_bdry {μ : measure α'} {s : set α'}
382-
(h_nullbdry : μ (frontier s) = 0) : μ (interior s) = μ s :=
383-
measure_eq_measure_smaller_of_between_null_diff
384-
interior_subset subset_closure h_nullbdry
385-
386-
lemma measure_closure_of_null_bdry {μ : measure α'} {s : set α'}
387-
(h_nullbdry : μ (frontier s) = 0) : μ (closure s) = μ s :=
388-
(measure_eq_measure_larger_of_between_null_diff
389-
interior_subset subset_closure h_nullbdry).symm
381+
lemma interior_ae_eq_of_null_frontier {μ : measure α'} {s : set α'}
382+
(h : μ (frontier s) = 0) : interior s =ᵐ[μ] s :=
383+
interior_subset.eventually_le.antisymm $
384+
subset_closure.eventually_le.trans (ae_le_set.2 h)
385+
386+
lemma measure_interior_of_null_frontier {μ : measure α'} {s : set α'}
387+
(h : μ (frontier s) = 0) : μ (interior s) = μ s :=
388+
measure_congr (interior_ae_eq_of_null_frontier h)
389+
390+
lemma null_measurable_set_of_null_frontier {s : set α} {μ : measure α}
391+
(h : μ (frontier s) = 0) : null_measurable_set s μ :=
392+
⟨interior s, is_open_interior.measurable_set, (interior_ae_eq_of_null_frontier h).symm⟩
393+
394+
lemma closure_ae_eq_of_null_frontier {μ : measure α'} {s : set α'}
395+
(h : μ (frontier s) = 0) : closure s =ᵐ[μ] s :=
396+
((ae_le_set.2 h).trans interior_subset.eventually_le).antisymm $ subset_closure.eventually_le
397+
398+
lemma measure_closure_of_null_frontier {μ : measure α'} {s : set α'}
399+
(h : μ (frontier s) = 0) : μ (closure s) = μ s :=
400+
measure_congr (closure_ae_eq_of_null_frontier h)
390401

391402
section preorder
392403
variables [preorder α] [order_closed_topology α] {a b x : α}

0 commit comments

Comments
 (0)