@@ -87,7 +87,7 @@ set of points `(x, y)` with `x ≤ y` is closed in the product space. We introdu
87
87
This property is satisfied for the order topology on a linear order, but it can be satisfied more
88
88
generally, and suffices to derive many interesting properties relating order and topology. -/
89
89
class order_closed_topology (α : Type *) [topological_space α] [preorder α] : Prop :=
90
- (is_closed_le' : is_closed {p:α× α | p.1 ≤ p.2 })
90
+ (is_closed_le' : is_closed {p : α × α | p.1 ≤ p.2 })
91
91
92
92
instance [topological_space α] [h : first_countable_topology α] : first_countable_topology αᵒᵈ := h
93
93
@@ -718,7 +718,7 @@ it on a preorder, but it is mostly interesting in linear orders, where it is als
718
718
We define it as a mixin. If you want to introduce the order topology on a preorder, use
719
719
`preorder.topology`. -/
720
720
class order_topology (α : Type *) [t : topological_space α] [preorder α] : Prop :=
721
- (topology_eq_generate_intervals : t = generate_from {s | ∃a, s = Ioi a ∨ s = Iio a})
721
+ (topology_eq_generate_intervals : t = generate_from {s | ∃ a, s = Ioi a ∨ s = Iio a})
722
722
723
723
/-- (Order) topology on a partial order `α` generated by the subbase of open intervals
724
724
`(a, ∞) = { x ∣ a < x }, (-∞ , b) = {x ∣ x < b}` for all `a, b` in `α`. We do not register it as an
@@ -729,23 +729,23 @@ generate_from {s : set α | ∃ (a : α), s = {b : α | a < b} ∨ s = {b : α |
729
729
730
730
section order_topology
731
731
732
- instance {α : Type *} [topological_space α] [partial_order α] [order_topology α] :
733
- order_topology αᵒᵈ :=
734
- ⟨by convert @order_topology.topology_eq_generate_intervals α _ _ _;
735
- conv in (_ ∨ _) { rw or.comm }; refl⟩
732
+ section preorder
736
733
737
- section partial_order
738
- variables [topological_space α] [partial_order α] [t : order_topology α]
734
+ variables [topological_space α] [preorder α] [t : order_topology α]
739
735
include t
740
736
737
+ instance : order_topology αᵒᵈ :=
738
+ ⟨by convert @order_topology.topology_eq_generate_intervals α _ _ _;
739
+ conv in (_ ∨ _) { rw or.comm }; refl⟩
740
+
741
741
lemma is_open_iff_generate_intervals {s : set α} :
742
- is_open s ↔ generate_open {s | ∃a, s = Ioi a ∨ s = Iio a} s :=
742
+ is_open s ↔ generate_open {s | ∃ a, s = Ioi a ∨ s = Iio a} s :=
743
743
by rw [t.topology_eq_generate_intervals]; refl
744
744
745
- lemma is_open_lt' (a : α) : is_open {b: α | a < b} :=
745
+ lemma is_open_lt' (a : α) : is_open {b : α | a < b} :=
746
746
by rw [@is_open_iff_generate_intervals α _ _ t]; exact generate_open.basic _ ⟨a, or.inl rfl⟩
747
747
748
- lemma is_open_gt' (a : α) : is_open {b: α | b < a} :=
748
+ lemma is_open_gt' (a : α) : is_open {b : α | b < a} :=
749
749
by rw [@is_open_iff_generate_intervals α _ _ t]; exact generate_open.basic _ ⟨a, or.inr rfl⟩
750
750
751
751
lemma lt_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 b, a < x :=
@@ -761,7 +761,7 @@ lemma ge_mem_nhds {a b : α} (h : a < b) : ∀ᶠ x in 𝓝 a, x ≤ b :=
761
761
(𝓝 a).sets_of_superset (gt_mem_nhds h) $ assume b hb, le_of_lt hb
762
762
763
763
lemma nhds_eq_order (a : α) :
764
- 𝓝 a = (⨅b ∈ Iio a, 𝓟 (Ioi b)) ⊓ (⨅b ∈ Ioi a, 𝓟 (Iio b)) :=
764
+ 𝓝 a = (⨅ b ∈ Iio a, 𝓟 (Ioi b)) ⊓ (⨅ b ∈ Ioi a, 𝓟 (Iio b)) :=
765
765
by rw [t.topology_eq_generate_intervals, nhds_generate_from];
766
766
from le_antisymm
767
767
(le_inf
@@ -823,7 +823,7 @@ by rw [nhds_order_unbounded hu hl];
823
823
from (tendsto_infi.2 $ assume l, tendsto_infi.2 $ assume hl,
824
824
tendsto_infi.2 $ assume u, tendsto_infi.2 $ assume hu, tendsto_principal.2 $ h l u hl hu)
825
825
826
- end partial_order
826
+ end preorder
827
827
828
828
instance tendsto_Ixx_nhds_within {α : Type *} [preorder α] [topological_space α]
829
829
(a : α) {s t : set α} {Ixx}
@@ -832,7 +832,7 @@ instance tendsto_Ixx_nhds_within {α : Type*} [preorder α] [topological_space
832
832
filter.tendsto_Ixx_class_inf
833
833
834
834
instance tendsto_Icc_class_nhds_pi {ι : Type *} {α : ι → Type *}
835
- [Π i, partial_order (α i)] [Π i, topological_space (α i)] [∀ i, order_topology (α i)]
835
+ [Π i, preorder (α i)] [Π i, topological_space (α i)] [∀ i, order_topology (α i)]
836
836
(f : Π i, α i) :
837
837
tendsto_Ixx_class Icc (𝓝 f) (𝓝 f) :=
838
838
begin
@@ -846,7 +846,7 @@ begin
846
846
end
847
847
848
848
theorem induced_order_topology' {α : Type u} {β : Type v}
849
- [partial_order α] [ta : topological_space β] [partial_order β] [order_topology β]
849
+ [preorder α] [ta : topological_space β] [preorder β] [order_topology β]
850
850
(f : α → β) (hf : ∀ {x y}, f x < f y ↔ x < y)
851
851
(H₁ : ∀ {a x}, x < f a → ∃ b < a, x ≤ f b)
852
852
(H₂ : ∀ {a x}, f a < x → ∃ b > a, f b ≤ x) :
@@ -875,7 +875,7 @@ begin
875
875
end
876
876
877
877
theorem induced_order_topology {α : Type u} {β : Type v}
878
- [partial_order α] [ta : topological_space β] [partial_order β] [order_topology β]
878
+ [preorder α] [ta : topological_space β] [preorder β] [order_topology β]
879
879
(f : α → β) (hf : ∀ {x y}, f x < f y ↔ x < y)
880
880
(H : ∀ {x y}, x < y → ∃ a, x < f a ∧ f a < y) :
881
881
@order_topology _ (induced f ta) _ :=
@@ -932,24 +932,24 @@ begin
932
932
exact λ hx, ht.out a.2 y.2 ⟨le_of_lt h, le_of_not_gt hx⟩ } }
933
933
end
934
934
935
- lemma nhds_within_Ici_eq'' [topological_space α] [partial_order α] [order_topology α] (a : α) :
935
+ lemma nhds_within_Ici_eq'' [topological_space α] [preorder α] [order_topology α] (a : α) :
936
936
𝓝[≥] a = (⨅ u (hu : a < u), 𝓟 (Iio u)) ⊓ 𝓟 (Ici a) :=
937
937
begin
938
938
rw [nhds_within, nhds_eq_order],
939
939
refine le_antisymm (inf_le_inf_right _ inf_le_right) (le_inf (le_inf _ inf_le_left) inf_le_right),
940
940
exact inf_le_right.trans (le_infi₂ $ λ l hl, principal_mono.2 $ Ici_subset_Ioi.2 hl)
941
941
end
942
942
943
- lemma nhds_within_Iic_eq'' [topological_space α] [partial_order α] [order_topology α] (a : α) :
943
+ lemma nhds_within_Iic_eq'' [topological_space α] [preorder α] [order_topology α] (a : α) :
944
944
𝓝[≤] a = (⨅ l < a, 𝓟 (Ioi l)) ⊓ 𝓟 (Iic a) :=
945
945
nhds_within_Ici_eq'' (to_dual a)
946
946
947
- lemma nhds_within_Ici_eq' [topological_space α] [partial_order α] [order_topology α] {a : α}
947
+ lemma nhds_within_Ici_eq' [topological_space α] [preorder α] [order_topology α] {a : α}
948
948
(ha : ∃ u, a < u) :
949
949
𝓝[≥] a = ⨅ u (hu : a < u), 𝓟 (Ico a u) :=
950
950
by simp only [nhds_within_Ici_eq'', binfi_inf ha, inf_principal, Iio_inter_Ici]
951
951
952
- lemma nhds_within_Iic_eq' [topological_space α] [partial_order α] [order_topology α] {a : α}
952
+ lemma nhds_within_Iic_eq' [topological_space α] [preorder α] [order_topology α] {a : α}
953
953
(ha : ∃ l, l < a) :
954
954
𝓝[≤] a = ⨅ l < a, 𝓟 (Ioc l a) :=
955
955
by simp only [nhds_within_Iic_eq'', binfi_inf ha, inf_principal, Ioi_inter_Iic]
@@ -973,11 +973,11 @@ lemma nhds_within_Iic_basis [topological_space α] [linear_order α] [order_topo
973
973
[no_min_order α] (a : α) : (𝓝[≤] a).has_basis (λ l, l < a) (λ l, Ioc l a) :=
974
974
nhds_within_Iic_basis' (exists_lt a)
975
975
976
- lemma nhds_top_order [topological_space α] [partial_order α] [order_top α] [order_topology α] :
976
+ lemma nhds_top_order [topological_space α] [preorder α] [order_top α] [order_topology α] :
977
977
𝓝 (⊤:α) = (⨅l (h₂ : l < ⊤), 𝓟 (Ioi l)) :=
978
978
by simp [nhds_eq_order (⊤:α)]
979
979
980
- lemma nhds_bot_order [topological_space α] [partial_order α] [order_bot α] [order_topology α] :
980
+ lemma nhds_bot_order [topological_space α] [preorder α] [order_bot α] [order_topology α] :
981
981
𝓝 (⊥:α) = (⨅l (h₂ : ⊥ < l), 𝓟 (Iio l)) :=
982
982
by simp [nhds_eq_order (⊥:α)]
983
983
@@ -1004,7 +1004,7 @@ lemma nhds_bot_basis_Iic [topological_space α] [linear_order α] [order_bot α]
1004
1004
(𝓝 ⊥).has_basis (λ a : α, ⊥ < a) Iic :=
1005
1005
@nhds_top_basis_Ici αᵒᵈ _ _ _ _ _ _
1006
1006
1007
- lemma tendsto_nhds_top_mono [topological_space β] [partial_order β] [order_top β] [order_topology β]
1007
+ lemma tendsto_nhds_top_mono [topological_space β] [preorder β] [order_top β] [order_topology β]
1008
1008
{l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊤)) (hg : f ≤ᶠ[l] g) :
1009
1009
tendsto g l (𝓝 ⊤) :=
1010
1010
begin
@@ -1013,17 +1013,17 @@ begin
1013
1013
filter_upwards [hf x hx, hg] with _ using lt_of_lt_of_le,
1014
1014
end
1015
1015
1016
- lemma tendsto_nhds_bot_mono [topological_space β] [partial_order β] [order_bot β] [order_topology β]
1016
+ lemma tendsto_nhds_bot_mono [topological_space β] [preorder β] [order_bot β] [order_topology β]
1017
1017
{l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊥)) (hg : g ≤ᶠ[l] f) :
1018
1018
tendsto g l (𝓝 ⊥) :=
1019
1019
@tendsto_nhds_top_mono α βᵒᵈ _ _ _ _ _ _ _ hf hg
1020
1020
1021
- lemma tendsto_nhds_top_mono' [topological_space β] [partial_order β] [order_top β]
1021
+ lemma tendsto_nhds_top_mono' [topological_space β] [preorder β] [order_top β]
1022
1022
[order_topology β] {l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊤)) (hg : f ≤ g) :
1023
1023
tendsto g l (𝓝 ⊤) :=
1024
1024
tendsto_nhds_top_mono hf (eventually_of_forall hg)
1025
1025
1026
- lemma tendsto_nhds_bot_mono' [topological_space β] [partial_order β] [order_bot β]
1026
+ lemma tendsto_nhds_bot_mono' [topological_space β] [preorder β] [order_bot β]
1027
1027
[order_topology β] {l : filter α} {f g : α → β} (hf : tendsto f l (𝓝 ⊥)) (hg : g ≤ f) :
1028
1028
tendsto g l (𝓝 ⊥) :=
1029
1029
tendsto_nhds_bot_mono hf (eventually_of_forall hg)
0 commit comments