@@ -61,8 +61,9 @@ universes u v w
61
61
variables {α : Type u} [measurable_space α] {μ ν : measure α}
62
62
variables {β : Type v} [normed_group β] {γ : Type w} [normed_group γ]
63
63
64
- /-- A function is `integrable` if the integral of its pointwise norm is less than infinity. -/
65
- def integrable (f : α → β) (μ : measure α) : Prop := ∫⁻ a, nnnorm (f a) ∂μ < ⊤
64
+ /-- `integrable f μ` means that the integral `∫⁻ a, ∥f a∥ ∂μ` is finite; `integrable f` means
65
+ `integrable f volume`. -/
66
+ def integrable (f : α → β) (μ : measure α . volume_tac) : Prop := ∫⁻ a, nnnorm (f a) ∂μ < ⊤
66
67
67
68
lemma integrable_iff_norm (f : α → β) : integrable f μ ↔ ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ < ⊤ :=
68
69
by simp only [integrable, of_real_norm_eq_coe_nnnorm]
@@ -79,13 +80,21 @@ begin
79
80
end ,
80
81
by rw [integrable_iff_norm, lintegral_eq]
81
82
82
- lemma integrable.congr {f g : α → β} (hf : integrable f μ) (h : f =ᵐ[μ] g) : integrable g μ :=
83
+ lemma integrable.mono {f : α → β} {g : α → γ} (hg : integrable g μ) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ ∥g a∥) :
84
+ integrable f μ :=
83
85
begin
84
- simp only [integrable],
85
- convert hf using 1 ,
86
- exact lintegral_rw₁ (h.symm.fun_comp _) _
86
+ simp only [integrable_iff_norm] at *,
87
+ calc ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ ≤ ∫⁻ (a : α), (ennreal.of_real ∥g a∥) ∂μ :
88
+ lintegral_mono_ae (h.mono $ assume a h, of_real_le_of_real h)
89
+ ... < ⊤ : hg
87
90
end
88
91
92
+ lemma integrable.congr {f g : α → β} (hf : integrable f μ) (h : f =ᵐ[μ] g) : integrable g μ :=
93
+ hf.mono $ h.rw (λ a b, ∥b∥ ≤ ∥f a∥) (eventually_le.refl _ $ λ x, ∥f x∥)
94
+
95
+ lemma integrable_congr {f g : α → β} (h : f =ᵐ[μ] g) : integrable f μ ↔ integrable g μ :=
96
+ ⟨λ hf, hf.congr h, λ hg, hg.congr h.symm⟩
97
+
89
98
lemma integrable_const {c : β} : integrable (λ x : α, c) μ ↔ c = 0 ∨ μ univ < ⊤ :=
90
99
begin
91
100
simp only [integrable, lintegral_const],
@@ -98,18 +107,6 @@ begin
98
107
rwa [ne.def, nnnorm_eq_zero] }
99
108
end
100
109
101
- lemma integrable_congr {f g : α → β} (h : f =ᵐ[μ] g) : integrable f μ ↔ integrable g μ :=
102
- ⟨λ hf, hf.congr h, λ hg, hg.congr h.symm⟩
103
-
104
- lemma integrable.mono {f : α → β} {g : α → γ} (hg : integrable g μ) (h : ∀ᵐ a ∂μ, ∥f a∥ ≤ ∥g a∥) :
105
- integrable f μ :=
106
- begin
107
- simp only [integrable_iff_norm] at *,
108
- calc ∫⁻ a, (ennreal.of_real ∥f a∥) ∂μ ≤ ∫⁻ (a : α), (ennreal.of_real ∥g a∥) ∂μ :
109
- lintegral_mono_ae (h.mono $ assume a h, of_real_le_of_real h)
110
- ... < ⊤ : hg
111
- end
112
-
113
110
lemma integrable.mono_meas {f : α → β} (h : integrable f ν) (hμ : μ ≤ ν) :
114
111
integrable f μ :=
115
112
lt_of_le_of_lt (lintegral_mono' hμ (le_refl _)) h
0 commit comments