79
79
exact h p hp q hq, }
80
80
end
81
81
82
- lemma commutator_containment ( H₁ H₂ : subgroup G) {p q : G} (hp : p ∈ H₁) (hq : q ∈ H₂) :
83
- p * q * p⁻¹ * q⁻¹ ∈ ⁅H₁, H₂⁆ :=
82
+ lemma commutator_mem_commutator { H₁ H₂ : subgroup G} {p q : G} (hp : p ∈ H₁) (hq : q ∈ H₂) :
83
+ ⁅p, q⁆ ∈ ⁅H₁, H₂⁆ :=
84
84
(commutator_le H₁ H₂ ⁅H₁, H₂⁆).mp (le_refl ⁅H₁, H₂⁆) p hp q hq
85
85
86
86
lemma commutator_comm (H₁ H₂ : subgroup G) : ⁅H₁, H₂⁆ = ⁅H₂, H₁⁆ :=
@@ -126,11 +126,11 @@ begin
126
126
{ rw [gc_map_comap, commutator_le],
127
127
intros p hp q hq,
128
128
simp only [mem_comap, map_inv, map_mul],
129
- exact commutator_containment _ _ (mem_map_of_mem _ hp) (mem_map_of_mem _ hq), },
129
+ exact commutator_mem_commutator (mem_map_of_mem _ hp) (mem_map_of_mem _ hq), },
130
130
{ rw [commutator_le],
131
131
rintros _ ⟨p, hp, rfl⟩ _ ⟨q, hq, rfl⟩,
132
132
simp only [← map_inv, ← map_mul],
133
- exact mem_map_of_mem _ (commutator_containment _ _ hp hq), }
133
+ exact mem_map_of_mem _ (commutator_mem_commutator hp hq), }
134
134
end
135
135
136
136
lemma commutator_prod_prod {G₂ : Type *} [group G₂]
@@ -140,7 +140,7 @@ begin
140
140
apply le_antisymm,
141
141
{ rw commutator_le,
142
142
rintros ⟨p₁, p₂⟩ ⟨hp₁, hp₂⟩ ⟨q₁, q₂⟩ ⟨hq₁, hq₂⟩,
143
- exact ⟨commutator_containment _ _ hp₁ hq₁, commutator_containment _ _ hp₂ hq₂⟩},
143
+ exact ⟨commutator_mem_commutator hp₁ hq₁, commutator_mem_commutator hp₂ hq₂⟩ },
144
144
{ rw prod_le_iff, split;
145
145
{ rw map_commutator,
146
146
apply commutator_mono;
@@ -155,8 +155,7 @@ See `commutator_pi_pi_of_fintype` for equality given `fintype η`.
155
155
lemma commutator_pi_pi_le {η : Type *} {Gs : η → Type *} [∀ i, group (Gs i)]
156
156
(H K : Π i, subgroup (Gs i)) :
157
157
⁅subgroup.pi set.univ H, subgroup.pi set.univ K⁆ ≤ subgroup.pi set.univ (λ i, ⁅H i, K i⁆) :=
158
- (commutator_le _ _ _).mpr $
159
- λ p hp q hq i hi, commutator_containment _ _ (hp i hi) (hq i hi)
158
+ (commutator_le _ _ _).mpr $ λ p hp q hq i hi, commutator_mem_commutator (hp i hi) (hq i hi)
160
159
161
160
/-- The commutator of a finite direct product is contained in the direct product of the commutators.
162
161
-/
0 commit comments