Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit ef25c4c

Browse files
committed
refactor(group_theory/commutator): Rename commutator_containment to commutator_mem_commutator (#12553)
This PR renames `commutator_containment` to `commutator_mem_commutator`, uses the new commutator notation, and makes the subgroups implicit.
1 parent 9facd19 commit ef25c4c

File tree

3 files changed

+8
-9
lines changed

3 files changed

+8
-9
lines changed

src/group_theory/commutator.lean

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -79,8 +79,8 @@ begin
7979
exact h p hp q hq, }
8080
end
8181

82-
lemma commutator_containment (H₁ H₂ : subgroup G) {p q : G} (hp : p ∈ H₁) (hq : q ∈ H₂) :
83-
p * q * p⁻¹ * q⁻¹ ∈ ⁅H₁, H₂⁆ :=
82+
lemma commutator_mem_commutator {H₁ H₂ : subgroup G} {p q : G} (hp : p ∈ H₁) (hq : q ∈ H₂) :
83+
⁅p, q⁆ ∈ ⁅H₁, H₂⁆ :=
8484
(commutator_le H₁ H₂ ⁅H₁, H₂⁆).mp (le_refl ⁅H₁, H₂⁆) p hp q hq
8585

8686
lemma commutator_comm (H₁ H₂ : subgroup G) : ⁅H₁, H₂⁆ = ⁅H₂, H₁⁆ :=
@@ -126,11 +126,11 @@ begin
126126
{ rw [gc_map_comap, commutator_le],
127127
intros p hp q hq,
128128
simp only [mem_comap, map_inv, map_mul],
129-
exact commutator_containment _ _ (mem_map_of_mem _ hp) (mem_map_of_mem _ hq), },
129+
exact commutator_mem_commutator (mem_map_of_mem _ hp) (mem_map_of_mem _ hq), },
130130
{ rw [commutator_le],
131131
rintros _ ⟨p, hp, rfl⟩ _ ⟨q, hq, rfl⟩,
132132
simp only [← map_inv, ← map_mul],
133-
exact mem_map_of_mem _ (commutator_containment _ _ hp hq), }
133+
exact mem_map_of_mem _ (commutator_mem_commutator hp hq), }
134134
end
135135

136136
lemma commutator_prod_prod {G₂ : Type*} [group G₂]
@@ -140,7 +140,7 @@ begin
140140
apply le_antisymm,
141141
{ rw commutator_le,
142142
rintros ⟨p₁, p₂⟩ ⟨hp₁, hp₂⟩ ⟨q₁, q₂⟩ ⟨hq₁, hq₂⟩,
143-
exact ⟨commutator_containment _ _ hp₁ hq₁, commutator_containment _ _ hp₂ hq₂⟩},
143+
exact ⟨commutator_mem_commutator hp₁ hq₁, commutator_mem_commutator hp₂ hq₂⟩ },
144144
{ rw prod_le_iff, split;
145145
{ rw map_commutator,
146146
apply commutator_mono;
@@ -155,8 +155,7 @@ See `commutator_pi_pi_of_fintype` for equality given `fintype η`.
155155
lemma commutator_pi_pi_le {η : Type*} {Gs : η → Type*} [∀ i, group (Gs i)]
156156
(H K : Π i, subgroup (Gs i)) :
157157
⁅subgroup.pi set.univ H, subgroup.pi set.univ K⁆ ≤ subgroup.pi set.univ (λ i, ⁅H i, K i⁆) :=
158-
(commutator_le _ _ _).mpr $
159-
λ p hp q hq i hi, commutator_containment _ _ (hp i hi) (hq i hi)
158+
(commutator_le _ _ _).mpr $ λ p hp q hq i hi, commutator_mem_commutator (hp i hi) (hq i hi)
160159

161160
/-- The commutator of a finite direct product is contained in the direct product of the commutators.
162161
-/

src/group_theory/nilpotent.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -312,7 +312,7 @@ theorem lower_central_series_is_descending_central_series :
312312
begin
313313
split, refl,
314314
intros x n hxn g,
315-
exact commutator_containment _ _ hxn (mem_top g),
315+
exact commutator_mem_commutator hxn (mem_top g),
316316
end
317317

318318
/-- Any descending central series for a group is bounded below by the lower central series. -/

src/group_theory/solvable.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -235,7 +235,7 @@ begin
235235
{ exact mem_top x },
236236
{ rw key,
237237
exact (derived_series_normal _ _).conj_mem _
238-
(commutator_containment _ _ ih ((derived_series_normal _ _).conj_mem _ ih _)) _ },
238+
(commutator_mem_commutator ih ((derived_series_normal _ _).conj_mem _ ih _)) _ },
239239
end
240240

241241
lemma equiv.perm.not_solvable (X : Type*) (hX : 5 ≤ cardinal.mk X) :

0 commit comments

Comments
 (0)