Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit f11d3ca

Browse files
feat(analysis/special_functions/pow): rpow as an order_iso (#10831)
Bundles `rpow` into an order isomorphism on `ennreal` when the exponent is a fixed positive real. - [x] depends on: #10701 Co-authored-by: Rob Lewis <Rob.y.lewis@gmail.com>
1 parent 8d41552 commit f11d3ca

File tree

1 file changed

+10
-0
lines changed

1 file changed

+10
-0
lines changed

src/analysis/special_functions/pow.lean

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1295,6 +1295,16 @@ lemma monotone_rpow_of_nonneg {z : ℝ} (h : 0 ≤ z) : monotone (λ x : ℝ≥0
12951295
h.eq_or_lt.elim (λ h0, h0 ▸ by simp only [rpow_zero, monotone_const])
12961296
(λ h0, (strict_mono_rpow_of_pos h0).monotone)
12971297

1298+
/-- Bundles `λ x : ℝ≥0∞, x ^ y` into an order isomorphism when `y : ℝ` is positive,
1299+
where the inverse is `λ x : ℝ≥0∞, x ^ (1 / y)`. -/
1300+
@[simps apply] def order_iso_rpow (y : ℝ) (hy : 0 < y) : ℝ≥0∞ ≃o ℝ≥0∞ :=
1301+
(strict_mono_rpow_of_pos hy).order_iso_of_right_inverse (λ x, x ^ y) (λ x, x ^ (1 / y))
1302+
(λ x, by { dsimp, rw [←rpow_mul, one_div_mul_cancel hy.ne.symm, rpow_one] })
1303+
1304+
lemma order_iso_rpow_symm_apply (y : ℝ) (hy : 0 < y) :
1305+
(order_iso_rpow y hy).symm = order_iso_rpow (1 / y) (one_div_pos.2 hy) :=
1306+
by { simp only [order_iso_rpow, one_div_one_div], refl }
1307+
12981308
lemma rpow_le_rpow {x y : ℝ≥0∞} {z : ℝ} (h₁ : x ≤ y) (h₂ : 0 ≤ z) : x^z ≤ y^z :=
12991309
monotone_rpow_of_nonneg h₂ h₁
13001310

0 commit comments

Comments
 (0)