@@ -13,12 +13,6 @@ variables {G : Type*} {H : Type*} {A : Type*} {a a₁ a₂ b c: G}
13
13
section group
14
14
variables [group G] [add_group A]
15
15
16
- @[to_additive]
17
- lemma injective_mul {a : G} : injective ((*) a) :=
18
- assume a₁ a₂ h,
19
- have a⁻¹ * a * a₁ = a⁻¹ * a * a₂, by rw [mul_assoc, mul_assoc, h],
20
- by rwa [inv_mul_self, one_mul, one_mul] at this
21
-
22
16
section prio
23
17
set_option default_priority 100 -- see Note [default priority]
24
18
/-- `s` is an additive subgroup: a set containing 0 and closed under addition and negation. -/
@@ -585,45 +579,17 @@ elements of s. It is the smallest normal subgroup containing s. -/
585
579
namespace group
586
580
variables {s : set G} [group G]
587
581
588
- /-- Given an element a, conjugates a is the set of conjugates. -/
589
- def conjugates (a : G) : set G := {b | is_conj a b}
590
-
591
- lemma mem_conjugates_self {a : G} : a ∈ conjugates a := is_conj_refl _
592
-
593
- /-- Given a set s, conjugates_of_set s is the set of all conjugates of
594
- the elements of s. -/
595
- def conjugates_of_set (s : set G) : set G := ⋃ a ∈ s, conjugates a
596
-
597
- lemma mem_conjugates_of_set_iff {x : G} : x ∈ conjugates_of_set s ↔ ∃ a ∈ s, is_conj a x :=
598
- set.mem_bUnion_iff
599
-
600
- theorem subset_conjugates_of_set : s ⊆ conjugates_of_set s :=
601
- λ (x : G) (h : x ∈ s), mem_conjugates_of_set_iff.2 ⟨x, h, is_conj_refl _⟩
602
-
603
- theorem conjugates_of_set_mono {s t : set G} (h : s ⊆ t) :
604
- conjugates_of_set s ⊆ conjugates_of_set t :=
605
- set.bUnion_subset_bUnion_left h
606
-
607
582
lemma conjugates_subset {t : set G} [normal_subgroup t] {a : G} (h : a ∈ t) : conjugates a ⊆ t :=
608
583
λ x ⟨c,w⟩,
609
584
begin
610
585
have H := normal_subgroup.normal a h c,
611
586
rwa ←w,
612
587
end
613
588
614
- theorem conjugates_of_set_subset {s t : set G} [normal_subgroup t] (h : s ⊆ t) :
589
+ theorem conjugates_of_set_subset' {s t : set G} [normal_subgroup t] (h : s ⊆ t) :
615
590
conjugates_of_set s ⊆ t :=
616
591
set.bUnion_subset (λ x H, conjugates_subset (h H))
617
592
618
- /-- The set of conjugates of s is closed under conjugation. -/
619
- lemma conj_mem_conjugates_of_set {x c : G} :
620
- x ∈ conjugates_of_set s → (c * x * c⁻¹ ∈ conjugates_of_set s) :=
621
- λ H,
622
- begin
623
- rcases (mem_conjugates_of_set_iff.1 H) with ⟨a,h₁,h₂⟩,
624
- exact mem_conjugates_of_set_iff.2 ⟨a, h₁, is_conj_trans h₂ ⟨c,rfl⟩⟩,
625
- end
626
-
627
593
/-- The normal closure of a set s is the subgroup closure of all the conjugates of
628
594
elements of s. It is the smallest normal subgroup containing s. -/
629
595
def normal_closure (s : set G) : set G := closure (conjugates_of_set s)
@@ -657,7 +623,7 @@ theorem normal_closure_subset {s t : set G} [normal_subgroup t] (h : s ⊆ t) :
657
623
λ a w,
658
624
begin
659
625
induction w with x hx x hx ihx x y hx hy ihx ihy,
660
- {exact (conjugates_of_set_subset h $ hx)},
626
+ {exact (conjugates_of_set_subset' h $ hx)},
661
627
{exact is_submonoid.one_mem},
662
628
{exact is_subgroup.inv_mem ihx},
663
629
{exact is_submonoid.mul_mem ihx ihy}
0 commit comments