Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit f2361dc

Browse files
committed
fix(group_theory/coset): left_cosets.left_cosets -> left_cosets.eq_class_eq_left_coset is now a theorem
1 parent 910de7e commit f2361dc

File tree

1 file changed

+7
-3
lines changed

1 file changed

+7
-3
lines changed

group_theory/coset.lean

Lines changed: 7 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -125,11 +125,15 @@ instance left_rel [group α] (s : set α) [is_subgroup s] : setoid α :=
125125

126126
def left_cosets [group α] (s : set α) [is_subgroup s] : Type* := quotient (left_rel s)
127127

128-
instance left_cosets.inhabited [group α] (s : set α) [is_subgroup s] : inhabited (left_cosets s) := ⟨⟦1⟧⟩
128+
namespace left_cosets
129129

130-
def left_cosets.left_coset [group α] (s : set α) [is_subgroup s] (g : α) : {x | ⟦x⟧ = ⟦g⟧} = left_coset g s :=
130+
instance [group α] (s : set α) [is_subgroup s] : inhabited (left_cosets s) := ⟨⟦1⟧⟩
131+
132+
lemma eq_class_eq_left_coset [group α] (s : set α) [is_subgroup s] (g : α) : {x | ⟦x⟧ = ⟦g⟧} = left_coset g s :=
131133
set.ext $ λ z, by simp [eq_comm, mem_left_coset_iff]; refl
132134

135+
end left_cosets
136+
133137
namespace is_subgroup
134138
variables [group α] {s : set α}
135139

@@ -144,7 +148,7 @@ noncomputable def group_equiv_left_cosets_times_subgroup (hs : is_subgroup s) :
144148
calc α ≃ Σ L : left_cosets s, {x // ⟦x⟧ = L} :
145149
equiv.equiv_fib quotient.mk
146150
... ≃ Σ L : left_cosets s, left_coset (quotient.out L) s :
147-
equiv.sigma_congr_right (λ L, by rw ← left_cosets.left_coset; simp)
151+
equiv.sigma_congr_right (λ L, by rw ← left_cosets.eq_class_eq_left_coset; simp)
148152
... ≃ Σ L : left_cosets s, s :
149153
equiv.sigma_congr_right (λ L, left_coset_equiv_subgroup _)
150154
... ≃ (left_cosets s × s) :

0 commit comments

Comments
 (0)