This repository was archived by the owner on Jul 24, 2024. It is now read-only.
File tree Expand file tree Collapse file tree 1 file changed +7
-3
lines changed Expand file tree Collapse file tree 1 file changed +7
-3
lines changed Original file line number Diff line number Diff line change @@ -125,11 +125,15 @@ instance left_rel [group α] (s : set α) [is_subgroup s] : setoid α :=
125
125
126
126
def left_cosets [group α] (s : set α) [is_subgroup s] : Type * := quotient (left_rel s)
127
127
128
- instance left_cosets.inhabited [group α] (s : set α) [is_subgroup s] : inhabited (left_cosets s) := ⟨⟦ 1 ⟧⟩
128
+ namespace left_cosets
129
129
130
- def left_cosets.left_coset [group α] (s : set α) [is_subgroup s] (g : α) : {x | ⟦x⟧ = ⟦g⟧} = left_coset g s :=
130
+ instance [group α] (s : set α) [is_subgroup s] : inhabited (left_cosets s) := ⟨⟦1 ⟧⟩
131
+
132
+ lemma eq_class_eq_left_coset [group α] (s : set α) [is_subgroup s] (g : α) : {x | ⟦x⟧ = ⟦g⟧} = left_coset g s :=
131
133
set.ext $ λ z, by simp [eq_comm, mem_left_coset_iff]; refl
132
134
135
+ end left_cosets
136
+
133
137
namespace is_subgroup
134
138
variables [group α] {s : set α}
135
139
@@ -144,7 +148,7 @@ noncomputable def group_equiv_left_cosets_times_subgroup (hs : is_subgroup s) :
144
148
calc α ≃ Σ L : left_cosets s, {x // ⟦x⟧ = L} :
145
149
equiv.equiv_fib quotient.mk
146
150
... ≃ Σ L : left_cosets s, left_coset (quotient.out L) s :
147
- equiv.sigma_congr_right (λ L, by rw ← left_cosets.left_coset ; simp)
151
+ equiv.sigma_congr_right (λ L, by rw ← left_cosets.eq_class_eq_left_coset ; simp)
148
152
... ≃ Σ L : left_cosets s, s :
149
153
equiv.sigma_congr_right (λ L, left_coset_equiv_subgroup _)
150
154
... ≃ (left_cosets s × s) :
You can’t perform that action at this time.
0 commit comments