|
| 1 | +/- |
| 2 | +Copyright (c) 2020 Frédéric Dupuis. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Frédéric Dupuis |
| 5 | +-/ |
| 6 | +import analysis.inner_product_space.projection |
| 7 | +import analysis.normed_space.dual |
| 8 | + |
| 9 | +/-! |
| 10 | +# The Fréchet-Riesz representation theorem |
| 11 | +
|
| 12 | +We consider inner product spaces, with base field over `ℝ` (the corresponding results for `ℂ` |
| 13 | +will require the definition of conjugate-linear maps). We define `to_dual_map`, a continuous linear |
| 14 | +map from `E` to its dual, which maps an element `x` of the space to `λ y, ⟪x, y⟫`. We check |
| 15 | +(`to_dual_map_isometry`) that this map is an isometry onto its image, and particular is injective. |
| 16 | +We also define `to_dual'` as the function taking taking a vector to its dual for a base field `𝕜` |
| 17 | +with `[is_R_or_C 𝕜]`; this is a function and not a linear map. |
| 18 | +
|
| 19 | +Finally, under the hypothesis of completeness (i.e., for Hilbert spaces), we prove the Fréchet-Riesz |
| 20 | +representation (`to_dual_map_eq_top`), which states the surjectivity: every element of the dual |
| 21 | +of a Hilbert space `E` has the form `λ u, ⟪x, u⟫` for some `x : E`. This permits the map |
| 22 | +`to_dual_map` to be upgraded to an (isometric) continuous linear equivalence, `to_dual`, between a |
| 23 | +Hilbert space and its dual. |
| 24 | +
|
| 25 | +## References |
| 26 | +
|
| 27 | +* [M. Einsiedler and T. Ward, *Functional Analysis, Spectral Theory, and Applications*] |
| 28 | + [EinsiedlerWard2017] |
| 29 | +
|
| 30 | +## Tags |
| 31 | +
|
| 32 | +dual, Fréchet-Riesz |
| 33 | +-/ |
| 34 | + |
| 35 | +noncomputable theory |
| 36 | +open_locale classical |
| 37 | +universes u v |
| 38 | + |
| 39 | +namespace inner_product_space |
| 40 | +open is_R_or_C continuous_linear_map |
| 41 | + |
| 42 | +section is_R_or_C |
| 43 | + |
| 44 | +variables (𝕜 : Type*) |
| 45 | +variables {E : Type*} [is_R_or_C 𝕜] [inner_product_space 𝕜 E] |
| 46 | +local notation `⟪`x`, `y`⟫` := @inner 𝕜 E _ x y |
| 47 | +local postfix `†`:90 := @is_R_or_C.conj 𝕜 _ |
| 48 | + |
| 49 | +/-- |
| 50 | +Given some `x` in an inner product space, we can define its dual as the continuous linear map |
| 51 | +`λ y, ⟪x, y⟫`. Consider using `to_dual` or `to_dual_map` instead in the real case. |
| 52 | +-/ |
| 53 | +def to_dual' : E →+ normed_space.dual 𝕜 E := |
| 54 | +{ to_fun := λ x, linear_map.mk_continuous |
| 55 | + { to_fun := λ y, ⟪x, y⟫, |
| 56 | + map_add' := λ _ _, inner_add_right, |
| 57 | + map_smul' := λ _ _, inner_smul_right } |
| 58 | + ∥x∥ |
| 59 | + (λ y, by { rw [is_R_or_C.norm_eq_abs], exact abs_inner_le_norm _ _ }), |
| 60 | + map_zero' := by { ext z, simp }, |
| 61 | + map_add' := λ x y, by { ext z, simp [inner_add_left] } } |
| 62 | + |
| 63 | +@[simp] lemma to_dual'_apply {x y : E} : to_dual' 𝕜 x y = ⟪x, y⟫ := rfl |
| 64 | + |
| 65 | +/-- In an inner product space, the norm of the dual of a vector `x` is `∥x∥` -/ |
| 66 | +@[simp] lemma norm_to_dual'_apply (x : E) : ∥to_dual' 𝕜 x∥ = ∥x∥ := |
| 67 | +begin |
| 68 | + refine le_antisymm _ _, |
| 69 | + { exact linear_map.mk_continuous_norm_le _ (norm_nonneg _) _ }, |
| 70 | + { cases eq_or_lt_of_le (norm_nonneg x) with h h, |
| 71 | + { have : x = 0 := norm_eq_zero.mp (eq.symm h), |
| 72 | + simp [this] }, |
| 73 | + { refine (mul_le_mul_right h).mp _, |
| 74 | + calc ∥x∥ * ∥x∥ = ∥x∥ ^ 2 : by ring |
| 75 | + ... = re ⟪x, x⟫ : norm_sq_eq_inner _ |
| 76 | + ... ≤ abs ⟪x, x⟫ : re_le_abs _ |
| 77 | + ... = ∥to_dual' 𝕜 x x∥ : by simp [norm_eq_abs] |
| 78 | + ... ≤ ∥to_dual' 𝕜 x∥ * ∥x∥ : le_op_norm (to_dual' 𝕜 x) x } } |
| 79 | +end |
| 80 | + |
| 81 | +variables (E) |
| 82 | + |
| 83 | +lemma to_dual'_isometry : isometry (@to_dual' 𝕜 E _ _) := |
| 84 | +add_monoid_hom.isometry_of_norm _ (norm_to_dual'_apply 𝕜) |
| 85 | + |
| 86 | +/-- |
| 87 | +Fréchet-Riesz representation: any `ℓ` in the dual of a Hilbert space `E` is of the form |
| 88 | +`λ u, ⟪y, u⟫` for some `y : E`, i.e. `to_dual'` is surjective. |
| 89 | +-/ |
| 90 | +lemma to_dual'_surjective [complete_space E] : function.surjective (@to_dual' 𝕜 E _ _) := |
| 91 | +begin |
| 92 | + intros ℓ, |
| 93 | + set Y := ker ℓ with hY, |
| 94 | + by_cases htriv : Y = ⊤, |
| 95 | + { have hℓ : ℓ = 0, |
| 96 | + { have h' := linear_map.ker_eq_top.mp htriv, |
| 97 | + rw [←coe_zero] at h', |
| 98 | + apply coe_injective, |
| 99 | + exact h' }, |
| 100 | + exact ⟨0, by simp [hℓ]⟩ }, |
| 101 | + { have Ycomplete := is_complete_ker ℓ, |
| 102 | + rw [← submodule.orthogonal_eq_bot_iff Ycomplete, ←hY] at htriv, |
| 103 | + change Yᗮ ≠ ⊥ at htriv, |
| 104 | + rw [submodule.ne_bot_iff] at htriv, |
| 105 | + obtain ⟨z : E, hz : z ∈ Yᗮ, z_ne_0 : z ≠ 0⟩ := htriv, |
| 106 | + refine ⟨((ℓ z)† / ⟪z, z⟫) • z, _⟩, |
| 107 | + ext x, |
| 108 | + have h₁ : (ℓ z) • x - (ℓ x) • z ∈ Y, |
| 109 | + { rw [mem_ker, map_sub, map_smul, map_smul, algebra.id.smul_eq_mul, algebra.id.smul_eq_mul, |
| 110 | + mul_comm], |
| 111 | + exact sub_self (ℓ x * ℓ z) }, |
| 112 | + have h₂ : (ℓ z) * ⟪z, x⟫ = (ℓ x) * ⟪z, z⟫, |
| 113 | + { have h₃ := calc |
| 114 | + 0 = ⟪z, (ℓ z) • x - (ℓ x) • z⟫ : by { rw [(Y.mem_orthogonal' z).mp hz], exact h₁ } |
| 115 | + ... = ⟪z, (ℓ z) • x⟫ - ⟪z, (ℓ x) • z⟫ : by rw [inner_sub_right] |
| 116 | + ... = (ℓ z) * ⟪z, x⟫ - (ℓ x) * ⟪z, z⟫ : by simp [inner_smul_right], |
| 117 | + exact sub_eq_zero.mp (eq.symm h₃) }, |
| 118 | + have h₄ := calc |
| 119 | + ⟪((ℓ z)† / ⟪z, z⟫) • z, x⟫ = (ℓ z) / ⟪z, z⟫ * ⟪z, x⟫ |
| 120 | + : by simp [inner_smul_left, conj_div, conj_conj] |
| 121 | + ... = (ℓ z) * ⟪z, x⟫ / ⟪z, z⟫ |
| 122 | + : by rw [←div_mul_eq_mul_div] |
| 123 | + ... = (ℓ x) * ⟪z, z⟫ / ⟪z, z⟫ |
| 124 | + : by rw [h₂] |
| 125 | + ... = ℓ x |
| 126 | + : begin |
| 127 | + have : ⟪z, z⟫ ≠ 0, |
| 128 | + { change z = 0 → false at z_ne_0, |
| 129 | + rwa ←inner_self_eq_zero at z_ne_0 }, |
| 130 | + field_simp [this] |
| 131 | + end, |
| 132 | + exact h₄ } |
| 133 | +end |
| 134 | + |
| 135 | +end is_R_or_C |
| 136 | + |
| 137 | +section real |
| 138 | + |
| 139 | +variables {F : Type*} [inner_product_space ℝ F] |
| 140 | + |
| 141 | +/-- In a real inner product space `F`, the function that takes a vector `x` in `F` to its dual |
| 142 | +`λ y, ⟪x, y⟫` is a continuous linear map. If the space is complete (i.e. is a Hilbert space), |
| 143 | +consider using `to_dual` instead. -/ |
| 144 | +-- TODO extend to `is_R_or_C` (requires a definition of conjugate linear maps) |
| 145 | +def to_dual_map : F →L[ℝ] (normed_space.dual ℝ F) := |
| 146 | +linear_map.mk_continuous |
| 147 | + { to_fun := to_dual' ℝ, |
| 148 | + map_add' := λ x y, by { ext, simp [inner_add_left] }, |
| 149 | + map_smul' := λ c x, by { ext, simp [inner_smul_left] } } |
| 150 | + 1 |
| 151 | + (λ x, by simp only [norm_to_dual'_apply, one_mul, linear_map.coe_mk]) |
| 152 | + |
| 153 | +@[simp] lemma to_dual_map_apply {x y : F} : to_dual_map x y = ⟪x, y⟫_ℝ := rfl |
| 154 | + |
| 155 | +/-- In an inner product space, the norm of the dual of a vector `x` is `∥x∥` -/ |
| 156 | +@[simp] lemma norm_to_dual_map_apply (x : F) : ∥to_dual_map x∥ = ∥x∥ := norm_to_dual'_apply _ _ |
| 157 | + |
| 158 | +lemma to_dual_map_isometry : isometry (@to_dual_map F _) := |
| 159 | +add_monoid_hom.isometry_of_norm _ norm_to_dual_map_apply |
| 160 | + |
| 161 | +lemma to_dual_map_injective : function.injective (@to_dual_map F _) := |
| 162 | +(@to_dual_map_isometry F _).injective |
| 163 | + |
| 164 | +@[simp] lemma ker_to_dual_map : (@to_dual_map F _).ker = ⊥ := |
| 165 | +linear_map.ker_eq_bot.mpr to_dual_map_injective |
| 166 | + |
| 167 | +@[simp] lemma to_dual_map_eq_iff_eq {x y : F} : to_dual_map x = to_dual_map y ↔ x = y := |
| 168 | +((linear_map.ker_eq_bot).mp (@ker_to_dual_map F _)).eq_iff |
| 169 | + |
| 170 | +variables [complete_space F] |
| 171 | + |
| 172 | +/-- |
| 173 | +Fréchet-Riesz representation: any `ℓ` in the dual of a real Hilbert space `F` is of the form |
| 174 | +`λ u, ⟪y, u⟫` for some `y` in `F`. See `inner_product_space.to_dual` for the continuous linear |
| 175 | +equivalence thus induced. |
| 176 | +-/ |
| 177 | +-- TODO extend to `is_R_or_C` (requires a definition of conjugate linear maps) |
| 178 | +lemma range_to_dual_map : (@to_dual_map F _).range = ⊤ := |
| 179 | +linear_map.range_eq_top.mpr (to_dual'_surjective ℝ F) |
| 180 | + |
| 181 | +/-- |
| 182 | +Fréchet-Riesz representation: If `F` is a Hilbert space, the function that takes a vector in `F` to |
| 183 | +its dual is a continuous linear equivalence. -/ |
| 184 | +def to_dual : F ≃L[ℝ] (normed_space.dual ℝ F) := |
| 185 | +continuous_linear_equiv.of_isometry to_dual_map.to_linear_map to_dual_map_isometry range_to_dual_map |
| 186 | + |
| 187 | +/-- |
| 188 | +Fréchet-Riesz representation: If `F` is a Hilbert space, the function that takes a vector in `F` to |
| 189 | +its dual is an isometry. -/ |
| 190 | +def isometric.to_dual : F ≃ᵢ normed_space.dual ℝ F := |
| 191 | +{ to_equiv := to_dual.to_linear_equiv.to_equiv, |
| 192 | + isometry_to_fun := to_dual'_isometry ℝ F} |
| 193 | + |
| 194 | +@[simp] lemma to_dual_apply {x y : F} : to_dual x y = ⟪x, y⟫_ℝ := rfl |
| 195 | + |
| 196 | +@[simp] lemma to_dual_eq_iff_eq {x y : F} : to_dual x = to_dual y ↔ x = y := |
| 197 | +(@to_dual F _ _).injective.eq_iff |
| 198 | + |
| 199 | +lemma to_dual_eq_iff_eq' {x x' : F} : (∀ y : F, ⟪x, y⟫_ℝ = ⟪x', y⟫_ℝ) ↔ x = x' := |
| 200 | +begin |
| 201 | + split, |
| 202 | + { intros h, |
| 203 | + have : to_dual x = to_dual x' → x = x' := to_dual_eq_iff_eq.mp, |
| 204 | + apply this, |
| 205 | + simp_rw [←to_dual_apply] at h, |
| 206 | + ext z, |
| 207 | + exact h z }, |
| 208 | + { rintros rfl y, |
| 209 | + refl } |
| 210 | +end |
| 211 | + |
| 212 | +@[simp] lemma norm_to_dual_apply (x : F) : ∥to_dual x∥ = ∥x∥ := norm_to_dual_map_apply x |
| 213 | + |
| 214 | +/-- In a Hilbert space, the norm of a vector in the dual space is the norm of its corresponding |
| 215 | +primal vector. -/ |
| 216 | +lemma norm_to_dual_symm_apply (ℓ : normed_space.dual ℝ F) : ∥to_dual.symm ℓ∥ = ∥ℓ∥ := |
| 217 | +begin |
| 218 | + have : ℓ = to_dual (to_dual.symm ℓ) := by simp only [continuous_linear_equiv.apply_symm_apply], |
| 219 | + conv_rhs { rw [this] }, |
| 220 | + refine eq.symm (norm_to_dual_apply _), |
| 221 | +end |
| 222 | + |
| 223 | +end real |
| 224 | + |
| 225 | +end inner_product_space |
0 commit comments