You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
{{ message }}
This repository was archived by the owner on Jul 24, 2024. It is now read-only.
rw [alg_hom.map_mul, alg_hom.map_mul, ha, hb], }, }, }
254
+
255
+
@[simp]lemmalift_aux_eq (f : X → A) : lift_aux R f = lift R f := rfl
256
+
257
+
@[simp]
258
+
lemmalift_symm_apply (F : free_algebra R X →ₐ[R] A) : (lift R).symm F = F ∘ (ι R) := rfl
259
+
233
260
variables {R X}
234
261
235
262
@[simp]
@@ -243,22 +270,7 @@ theorem lift_ι_apply (f : X → A) (x) :
243
270
@[simp]
244
271
theoremlift_unique (f : X → A) (g : free_algebra R X →ₐ[R] A) :
245
272
(g : free_algebra R X → A) ∘ (ι R) = f ↔ g = lift R f :=
246
-
begin
247
-
refine ⟨λ hyp, _, λ hyp, by rw [hyp, ι_comp_lift]⟩,
248
-
ext,
249
-
rcases x,
250
-
induction x,
251
-
{ change ((g : free_algebra R X → A) ∘ (ι R)) _ = _,
252
-
rw hyp,
253
-
refl },
254
-
{ exact alg_hom.commutes g x },
255
-
{ change g (quot.mk _ _ + quot.mk _ _) = _,
256
-
simp only [alg_hom.map_add, *],
257
-
refl },
258
-
{ change g (quot.mk _ _ * quot.mk _ _) = _,
259
-
simp only [alg_hom.map_mul, *],
260
-
refl },
261
-
end
273
+
(lift R).symm_apply_eq
262
274
263
275
/-!
264
276
At this stage we set the basic definitions as `@[irreducible]`, so from this point onwards one should only use the universal properties of the free algebra, and consider the actual implementation as a quotient of an inductive type as completely hidden.
0 commit comments