@@ -134,6 +134,61 @@ instance inner_product_space : inner_product_space 𝕜 (α →₂[μ] E) :=
134
134
135
135
end inner_product_space
136
136
137
+ section indicator_const_Lp
138
+
139
+ variables [measurable_space 𝕜] [borel_space 𝕜] {s : set α}
140
+
141
+ variables (𝕜)
142
+
143
+ /-- The inner product in `L2` of the indicator of a set `indicator_const_Lp 2 hs hμs c` and `f` is
144
+ equal to the integral of the inner product over `s`: `∫ x in s, ⟪c, f x⟫ ∂μ`. -/
145
+ lemma inner_indicator_const_Lp_eq_set_integral_inner (f : Lp E 2 μ) (hs : measurable_set s) (c : E)
146
+ (hμs : μ s ≠ ∞) :
147
+ inner (indicator_const_Lp 2 hs hμs c) f = ∫ x in s, ⟪c, f x⟫ ∂μ :=
148
+ begin
149
+ rw [inner_def, ← integral_add_compl hs (L2.integrable_inner _ f)],
150
+ have h_left : ∫ x in s, ⟪(indicator_const_Lp 2 hs hμs c) x, f x⟫ ∂μ = ∫ x in s, ⟪c, f x⟫ ∂μ,
151
+ { suffices h_ae_eq : ∀ᵐ x ∂μ, x ∈ s → ⟪indicator_const_Lp 2 hs hμs c x, f x⟫ = ⟪c, f x⟫,
152
+ from set_integral_congr_ae hs h_ae_eq,
153
+ have h_indicator : ∀ᵐ (x : α) ∂μ, x ∈ s → (indicator_const_Lp 2 hs hμs c x) = c,
154
+ from indicator_const_Lp_coe_fn_mem,
155
+ refine h_indicator.mono (λ x hx hxs, _),
156
+ congr,
157
+ exact hx hxs, },
158
+ have h_right : ∫ x in sᶜ, ⟪(indicator_const_Lp 2 hs hμs c) x, f x⟫ ∂μ = 0 ,
159
+ { suffices h_ae_eq : ∀ᵐ x ∂μ, x ∉ s → ⟪indicator_const_Lp 2 hs hμs c x, f x⟫ = 0 ,
160
+ { simp_rw ← set.mem_compl_iff at h_ae_eq,
161
+ suffices h_int_zero : ∫ x in sᶜ, inner (indicator_const_Lp 2 hs hμs c x) (f x) ∂μ
162
+ = ∫ x in sᶜ, (0 : 𝕜) ∂μ,
163
+ { rw h_int_zero,
164
+ simp, },
165
+ exact set_integral_congr_ae hs.compl h_ae_eq, },
166
+ have h_indicator : ∀ᵐ (x : α) ∂μ, x ∉ s → (indicator_const_Lp 2 hs hμs c x) = 0 ,
167
+ from indicator_const_Lp_coe_fn_nmem,
168
+ refine h_indicator.mono (λ x hx hxs, _),
169
+ rw hx hxs,
170
+ exact inner_zero_left, },
171
+ rw [h_left, h_right, add_zero],
172
+ end
173
+
174
+ /-- The inner product in `L2` of the indicator of a set `indicator_const_Lp 2 hs hμs c` and `f` is
175
+ equal to the inner product of the constant `c` and the integral of `f` over `s`. -/
176
+ lemma inner_indicator_const_Lp_eq_inner_set_integral [complete_space E] [normed_space ℝ E]
177
+ [is_scalar_tower ℝ 𝕜 E] (hs : measurable_set s) (hμs : μ s ≠ ∞) (c : E) (f : Lp E 2 μ) :
178
+ inner (indicator_const_Lp 2 hs hμs c) f = ⟪c, ∫ x in s, f x ∂μ⟫ :=
179
+ by rw [← integral_inner (integrable_on_Lp_of_measure_ne_top f fact_one_le_two_ennreal.elim hμs),
180
+ L2.inner_indicator_const_Lp_eq_set_integral_inner]
181
+
182
+ variables {𝕜}
183
+
184
+ /-- The inner product in `L2` of the indicator of a set `indicator_const_Lp 2 hs hμs (1 : ℝ)` and
185
+ a real function `f` is equal to the integral of `f` over `s`. -/
186
+ lemma inner_indicator_const_Lp_one (hs : measurable_set s) (hμs : μ s ≠ ∞) (f : Lp ℝ 2 μ) :
187
+ inner (indicator_const_Lp 2 hs hμs (1 : ℝ)) f = ∫ x in s, f x ∂μ :=
188
+ by { rw L2.inner_indicator_const_Lp_eq_inner_set_integral ℝ hs hμs (1 : ℝ) f, simp, }
189
+
190
+ end indicator_const_Lp
191
+
137
192
end L2
138
193
139
194
section inner_continuous
0 commit comments