Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit f331648

Browse files
committed
feat(analysis/normed_space): normed_algebra.to_topological_algebra (#6779)
Co-authored-by: Scott Morrison <scott.morrison@gmail.com>
1 parent abfddbf commit f331648

File tree

1 file changed

+17
-1
lines changed

1 file changed

+17
-1
lines changed

src/analysis/normed_space/basic.lean

Lines changed: 17 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -5,6 +5,7 @@ Authors: Patrick Massot, Johannes Hölzl
55
-/
66
import topology.instances.nnreal
77
import topology.algebra.module
8+
import topology.algebra.algebra
89
import topology.metric_space.antilipschitz
910

1011
/-!
@@ -294,7 +295,7 @@ lipschitz_on_with_iff_norm_sub_le.mp h x x_in y y_in
294295
/-- A homomorphism `f` of normed groups is continuous, if there exists a constant `C` such that for
295296
all `x`, one has `∥f x∥ ≤ C * ∥x∥`.
296297
The analogous condition for a linear map of normed spaces is in `normed_space.operator_norm`. -/
297-
lemma add_monoid_hom.continuous_of_bound (f :α →+ β) (C : ℝ) (h : ∀x, ∥f x∥ ≤ C * ∥x∥) :
298+
lemma add_monoid_hom.continuous_of_bound (f : α →+ β) (C : ℝ) (h : ∀x, ∥f x∥ ≤ C * ∥x∥) :
298299
continuous f :=
299300
(f.lipschitz_of_bound C h).continuous
300301

@@ -1188,6 +1189,21 @@ normed_algebra.norm_algebra_map_eq _
11881189
variables (𝕜 : Type*) [normed_field 𝕜]
11891190
variables (𝕜' : Type*) [normed_ring 𝕜']
11901191

1192+
-- This could also be proved via `linear_map.continuous_of_bound`,
1193+
-- but this is further up the import tree in `normed_space.operator_norm`, so not yet available.
1194+
@[continuity] lemma normed_algebra.algebra_map_continuous
1195+
[normed_algebra 𝕜 𝕜'] :
1196+
continuous (algebra_map 𝕜 𝕜') :=
1197+
begin
1198+
change continuous (algebra_map 𝕜 𝕜').to_add_monoid_hom,
1199+
exact add_monoid_hom.continuous_of_bound _ 1 (λ x, by simp),
1200+
end
1201+
1202+
@[priority 100]
1203+
instance normed_algebra.to_topological_algebra [normed_algebra 𝕜 𝕜'] :
1204+
topological_algebra 𝕜 𝕜' :=
1205+
by continuity⟩
1206+
11911207
@[priority 100]
11921208
instance normed_algebra.to_normed_space [h : normed_algebra 𝕜 𝕜'] : normed_space 𝕜 𝕜' :=
11931209
{ norm_smul_le := λ s x, calc

0 commit comments

Comments
 (0)