@@ -5,6 +5,7 @@ Authors: Patrick Massot, Johannes Hölzl
5
5
-/
6
6
import topology.instances.nnreal
7
7
import topology.algebra.module
8
+ import topology.algebra.algebra
8
9
import topology.metric_space.antilipschitz
9
10
10
11
/-!
@@ -294,7 +295,7 @@ lipschitz_on_with_iff_norm_sub_le.mp h x x_in y y_in
294
295
/-- A homomorphism `f` of normed groups is continuous, if there exists a constant `C` such that for
295
296
all `x`, one has `∥f x∥ ≤ C * ∥x∥`.
296
297
The analogous condition for a linear map of normed spaces is in `normed_space.operator_norm`. -/
297
- lemma add_monoid_hom.continuous_of_bound (f :α →+ β) (C : ℝ) (h : ∀x, ∥f x∥ ≤ C * ∥x∥) :
298
+ lemma add_monoid_hom.continuous_of_bound (f : α →+ β) (C : ℝ) (h : ∀x, ∥f x∥ ≤ C * ∥x∥) :
298
299
continuous f :=
299
300
(f.lipschitz_of_bound C h).continuous
300
301
@@ -1188,6 +1189,21 @@ normed_algebra.norm_algebra_map_eq _
1188
1189
variables (𝕜 : Type *) [normed_field 𝕜]
1189
1190
variables (𝕜' : Type *) [normed_ring 𝕜']
1190
1191
1192
+ -- This could also be proved via `linear_map.continuous_of_bound`,
1193
+ -- but this is further up the import tree in `normed_space.operator_norm`, so not yet available.
1194
+ @[continuity] lemma normed_algebra.algebra_map_continuous
1195
+ [normed_algebra 𝕜 𝕜'] :
1196
+ continuous (algebra_map 𝕜 𝕜') :=
1197
+ begin
1198
+ change continuous (algebra_map 𝕜 𝕜').to_add_monoid_hom,
1199
+ exact add_monoid_hom.continuous_of_bound _ 1 (λ x, by simp),
1200
+ end
1201
+
1202
+ @[priority 100 ]
1203
+ instance normed_algebra.to_topological_algebra [normed_algebra 𝕜 𝕜'] :
1204
+ topological_algebra 𝕜 𝕜' :=
1205
+ ⟨by continuity⟩
1206
+
1191
1207
@[priority 100 ]
1192
1208
instance normed_algebra.to_normed_space [h : normed_algebra 𝕜 𝕜'] : normed_space 𝕜 𝕜' :=
1193
1209
{ norm_smul_le := λ s x, calc
0 commit comments