@@ -74,9 +74,8 @@ differentiable_sin x
74
74
@[simp] lemma deriv_sin : deriv sin = cos :=
75
75
funext $ λ x, (has_deriv_at_sin x).deriv
76
76
77
- @[continuity]
78
- lemma continuous_sin : continuous sin :=
79
- differentiable_sin.continuous
77
+ @[continuity] lemma continuous_sin : continuous sin :=
78
+ by { change continuous (λ z, ((exp (-z * I) - exp (z * I)) * I) / 2 ), continuity, }
80
79
81
80
lemma continuous_on_sin {s : set ℂ} : continuous_on sin s := continuous_sin.continuous_on
82
81
@@ -111,9 +110,8 @@ lemma deriv_cos {x : ℂ} : deriv cos x = -sin x :=
111
110
@[simp] lemma deriv_cos' : deriv cos = (λ x, -sin x) :=
112
111
funext $ λ x, deriv_cos
113
112
114
- @[continuity]
115
- lemma continuous_cos : continuous cos :=
116
- differentiable_cos.continuous
113
+ @[continuity] lemma continuous_cos : continuous cos :=
114
+ by { change continuous (λ z, (exp (z * I) + exp (-z * I)) / 2 ), continuity, }
117
115
118
116
lemma continuous_on_cos {s : set ℂ} : continuous_on cos s := continuous_cos.continuous_on
119
117
@@ -143,9 +141,8 @@ differentiable_sinh x
143
141
@[simp] lemma deriv_sinh : deriv sinh = cosh :=
144
142
funext $ λ x, (has_deriv_at_sinh x).deriv
145
143
146
- @[continuity]
147
- lemma continuous_sinh : continuous sinh :=
148
- differentiable_sinh.continuous
144
+ @[continuity] lemma continuous_sinh : continuous sinh :=
145
+ by { change continuous (λ z, (exp z - exp (-z)) / 2 ), continuity, }
149
146
150
147
/-- The complex hyperbolic cosine function is everywhere strictly differentiable, with the
151
148
derivative `sinh x`. -/
@@ -173,9 +170,8 @@ differentiable_cosh x
173
170
@[simp] lemma deriv_cosh : deriv cosh = sinh :=
174
171
funext $ λ x, (has_deriv_at_cosh x).deriv
175
172
176
- @[continuity]
177
- lemma continuous_cosh : continuous cosh :=
178
- differentiable_cosh.continuous
173
+ @[continuity] lemma continuous_cosh : continuous cosh :=
174
+ by { change continuous (λ z, (exp z + exp (-z)) / 2 ), continuity, }
179
175
180
176
end complex
181
177
@@ -528,9 +524,8 @@ differentiable_sin x
528
524
@[simp] lemma deriv_sin : deriv sin = cos :=
529
525
funext $ λ x, (has_deriv_at_sin x).deriv
530
526
531
- @[continuity]
532
- lemma continuous_sin : continuous sin :=
533
- differentiable_sin.continuous
527
+ @[continuity] lemma continuous_sin : continuous sin :=
528
+ complex.continuous_re.comp (complex.continuous_sin.comp complex.continuous_of_real)
534
529
535
530
lemma continuous_on_sin {s} : continuous_on sin s :=
536
531
continuous_sin.continuous_on
@@ -556,9 +551,8 @@ lemma deriv_cos : deriv cos x = - sin x :=
556
551
@[simp] lemma deriv_cos' : deriv cos = (λ x, - sin x) :=
557
552
funext $ λ _, deriv_cos
558
553
559
- @[continuity]
560
- lemma continuous_cos : continuous cos :=
561
- differentiable_cos.continuous
554
+ @[continuity] lemma continuous_cos : continuous cos :=
555
+ complex.continuous_re.comp (complex.continuous_cos.comp complex.continuous_of_real)
562
556
563
557
lemma continuous_on_cos {s} : continuous_on cos s := continuous_cos.continuous_on
564
558
@@ -580,9 +574,8 @@ differentiable_sinh x
580
574
@[simp] lemma deriv_sinh : deriv sinh = cosh :=
581
575
funext $ λ x, (has_deriv_at_sinh x).deriv
582
576
583
- @[continuity]
584
- lemma continuous_sinh : continuous sinh :=
585
- differentiable_sinh.continuous
577
+ @[continuity] lemma continuous_sinh : continuous sinh :=
578
+ complex.continuous_re.comp (complex.continuous_sinh.comp complex.continuous_of_real)
586
579
587
580
lemma has_strict_deriv_at_cosh (x : ℝ) : has_strict_deriv_at cosh (sinh x) x :=
588
581
(complex.has_strict_deriv_at_cosh x).real_of_complex
@@ -602,9 +595,8 @@ differentiable_cosh x
602
595
@[simp] lemma deriv_cosh : deriv cosh = sinh :=
603
596
funext $ λ x, (has_deriv_at_cosh x).deriv
604
597
605
- @[continuity]
606
- lemma continuous_cosh : continuous cosh :=
607
- differentiable_cosh.continuous
598
+ @[continuity] lemma continuous_cosh : continuous cosh :=
599
+ complex.continuous_re.comp (complex.continuous_cosh.comp complex.continuous_of_real)
608
600
609
601
/-- `sinh` is strictly monotone. -/
610
602
lemma sinh_strict_mono : strict_mono sinh :=
0 commit comments