Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit f3746ea

Browse files
committed
chore(src/analysis/special_functions/trigonometric/basic) : prove continuity of sin/cos/sinh/cosh without derivatives (#9502)
In a future PR, I want to split all files in the special_functions folder to avoid importing calculus when not needed (the goal is to avoid importing it in the definition of lp_space in measure_theory). This PR changes the proofs of continuity of trigonometric functions.
1 parent e26a9e5 commit f3746ea

File tree

1 file changed

+16
-24
lines changed
  • src/analysis/special_functions/trigonometric

1 file changed

+16
-24
lines changed

src/analysis/special_functions/trigonometric/basic.lean

Lines changed: 16 additions & 24 deletions
Original file line numberDiff line numberDiff line change
@@ -74,9 +74,8 @@ differentiable_sin x
7474
@[simp] lemma deriv_sin : deriv sin = cos :=
7575
funext $ λ x, (has_deriv_at_sin x).deriv
7676

77-
@[continuity]
78-
lemma continuous_sin : continuous sin :=
79-
differentiable_sin.continuous
77+
@[continuity] lemma continuous_sin : continuous sin :=
78+
by { change continuous (λ z, ((exp (-z * I) - exp (z * I)) * I) / 2), continuity, }
8079

8180
lemma continuous_on_sin {s : set ℂ} : continuous_on sin s := continuous_sin.continuous_on
8281

@@ -111,9 +110,8 @@ lemma deriv_cos {x : ℂ} : deriv cos x = -sin x :=
111110
@[simp] lemma deriv_cos' : deriv cos = (λ x, -sin x) :=
112111
funext $ λ x, deriv_cos
113112

114-
@[continuity]
115-
lemma continuous_cos : continuous cos :=
116-
differentiable_cos.continuous
113+
@[continuity] lemma continuous_cos : continuous cos :=
114+
by { change continuous (λ z, (exp (z * I) + exp (-z * I)) / 2), continuity, }
117115

118116
lemma continuous_on_cos {s : set ℂ} : continuous_on cos s := continuous_cos.continuous_on
119117

@@ -143,9 +141,8 @@ differentiable_sinh x
143141
@[simp] lemma deriv_sinh : deriv sinh = cosh :=
144142
funext $ λ x, (has_deriv_at_sinh x).deriv
145143

146-
@[continuity]
147-
lemma continuous_sinh : continuous sinh :=
148-
differentiable_sinh.continuous
144+
@[continuity] lemma continuous_sinh : continuous sinh :=
145+
by { change continuous (λ z, (exp z - exp (-z)) / 2), continuity, }
149146

150147
/-- The complex hyperbolic cosine function is everywhere strictly differentiable, with the
151148
derivative `sinh x`. -/
@@ -173,9 +170,8 @@ differentiable_cosh x
173170
@[simp] lemma deriv_cosh : deriv cosh = sinh :=
174171
funext $ λ x, (has_deriv_at_cosh x).deriv
175172

176-
@[continuity]
177-
lemma continuous_cosh : continuous cosh :=
178-
differentiable_cosh.continuous
173+
@[continuity] lemma continuous_cosh : continuous cosh :=
174+
by { change continuous (λ z, (exp z + exp (-z)) / 2), continuity, }
179175

180176
end complex
181177

@@ -528,9 +524,8 @@ differentiable_sin x
528524
@[simp] lemma deriv_sin : deriv sin = cos :=
529525
funext $ λ x, (has_deriv_at_sin x).deriv
530526

531-
@[continuity]
532-
lemma continuous_sin : continuous sin :=
533-
differentiable_sin.continuous
527+
@[continuity] lemma continuous_sin : continuous sin :=
528+
complex.continuous_re.comp (complex.continuous_sin.comp complex.continuous_of_real)
534529

535530
lemma continuous_on_sin {s} : continuous_on sin s :=
536531
continuous_sin.continuous_on
@@ -556,9 +551,8 @@ lemma deriv_cos : deriv cos x = - sin x :=
556551
@[simp] lemma deriv_cos' : deriv cos = (λ x, - sin x) :=
557552
funext $ λ _, deriv_cos
558553

559-
@[continuity]
560-
lemma continuous_cos : continuous cos :=
561-
differentiable_cos.continuous
554+
@[continuity] lemma continuous_cos : continuous cos :=
555+
complex.continuous_re.comp (complex.continuous_cos.comp complex.continuous_of_real)
562556

563557
lemma continuous_on_cos {s} : continuous_on cos s := continuous_cos.continuous_on
564558

@@ -580,9 +574,8 @@ differentiable_sinh x
580574
@[simp] lemma deriv_sinh : deriv sinh = cosh :=
581575
funext $ λ x, (has_deriv_at_sinh x).deriv
582576

583-
@[continuity]
584-
lemma continuous_sinh : continuous sinh :=
585-
differentiable_sinh.continuous
577+
@[continuity] lemma continuous_sinh : continuous sinh :=
578+
complex.continuous_re.comp (complex.continuous_sinh.comp complex.continuous_of_real)
586579

587580
lemma has_strict_deriv_at_cosh (x : ℝ) : has_strict_deriv_at cosh (sinh x) x :=
588581
(complex.has_strict_deriv_at_cosh x).real_of_complex
@@ -602,9 +595,8 @@ differentiable_cosh x
602595
@[simp] lemma deriv_cosh : deriv cosh = sinh :=
603596
funext $ λ x, (has_deriv_at_cosh x).deriv
604597

605-
@[continuity]
606-
lemma continuous_cosh : continuous cosh :=
607-
differentiable_cosh.continuous
598+
@[continuity] lemma continuous_cosh : continuous cosh :=
599+
complex.continuous_re.comp (complex.continuous_cosh.comp complex.continuous_of_real)
608600

609601
/-- `sinh` is strictly monotone. -/
610602
lemma sinh_strict_mono : strict_mono sinh :=

0 commit comments

Comments
 (0)