@@ -366,7 +366,7 @@ variables (f g : α →ᵇ β) {x : α} {C : ℝ}
366
366
367
367
instance : has_zero (α →ᵇ β) := ⟨const α 0 ⟩
368
368
369
- @[simp] lemma coe_zero : (0 : α →ᵇ β) x = 0 := rfl
369
+ @[simp] lemma coe_zero : (( 0 : α →ᵇ β) : α → β) = 0 := rfl
370
370
371
371
instance : has_norm (α →ᵇ β) := ⟨λu, dist u 0 ⟩
372
372
@@ -396,7 +396,7 @@ variable {f}
396
396
397
397
/-- The norm of a function is controlled by the supremum of the pointwise norms -/
398
398
lemma norm_le (C0 : (0 : ℝ) ≤ C) : ∥f∥ ≤ C ↔ ∀x:α, ∥f x∥ ≤ C :=
399
- by simpa only [coe_zero, dist_zero_right] using @dist_le _ _ _ _ f 0 _ C0
399
+ by simpa using @dist_le _ _ _ _ f 0 _ C0
400
400
401
401
lemma norm_le_of_nonempty [nonempty α]
402
402
{f : α →ᵇ β} {M : ℝ} (w : ∀ x, ∥f x∥ ≤ M) : ∥f∥ ≤ M :=
@@ -478,6 +478,20 @@ instance : add_comm_group (α →ᵇ β) :=
478
478
@[simp] lemma coe_sub : ⇑(f - g) = λ x, f x - g x := rfl
479
479
lemma sub_apply : (f - g) x = f x - g x := rfl
480
480
481
+ /-- Coercion of a `normed_group_hom` is an `add_monoid_hom`. Similar to `add_monoid_hom.coe_fn` -/
482
+ @[simps]
483
+ def coe_fn_add_hom : (α →ᵇ β) →+ (α → β) :=
484
+ { to_fun := coe_fn, map_zero' := coe_zero, map_add' := coe_add}
485
+
486
+ open_locale big_operators
487
+ @[simp] lemma coe_sum {ι : Type *} (s : finset ι) (f : ι → (α →ᵇ β)) :
488
+ ⇑(∑ i in s, f i) = (∑ i in s, (f i : α → β)) :=
489
+ (@coe_fn_add_hom α β _ _).map_sum f s
490
+
491
+ lemma sum_apply {ι : Type *} (s : finset ι) (f : ι → (α →ᵇ β)) (a : α) :
492
+ (∑ i in s, f i) a = (∑ i in s, f i a) :=
493
+ by simp
494
+
481
495
instance : normed_group (α →ᵇ β) :=
482
496
{ dist_eq := λ f g, by simp only [norm_eq, dist_eq, dist_eq_norm, sub_apply] }
483
497
0 commit comments