@@ -856,6 +856,38 @@ begin
856
856
{ rw [h, submodule.bot_orthogonal_eq_top] }
857
857
end
858
858
859
+ namespace dense
860
+
861
+ open submodule
862
+
863
+ variables {x y : E} [complete_space E]
864
+
865
+ /-- If `S` is dense and `x - y ∈ Kᗮ`, then `x = y`. -/
866
+ lemma eq_of_sub_mem_orthogonal (hK : dense (K : set E)) (h : x - y ∈ Kᗮ) : x = y :=
867
+ begin
868
+ rw [dense_iff_topological_closure_eq_top, topological_closure_eq_top_iff] at hK,
869
+ rwa [hK, submodule.mem_bot, sub_eq_zero] at h,
870
+ end
871
+
872
+ lemma eq_zero_of_mem_orthogonal (hK : dense (K : set E)) (h : x ∈ Kᗮ) : x = 0 :=
873
+ hK.eq_of_sub_mem_orthogonal (by rwa [sub_zero])
874
+
875
+ lemma eq_of_inner_left (hK : dense (K : set E)) (h : ∀ v : K, ⟪x, v⟫ = ⟪y, v⟫) : x = y :=
876
+ hK.eq_of_sub_mem_orthogonal (submodule.sub_mem_orthogonal_of_inner_left h)
877
+
878
+ lemma eq_zero_of_inner_left (hK : dense (K : set E)) (h : ∀ v : K, ⟪x, v⟫ = 0 ) : x = 0 :=
879
+ hK.eq_of_inner_left (λ v, by rw [inner_zero_left, h v])
880
+
881
+ lemma eq_of_inner_right (hK : dense (K : set E))
882
+ (h : ∀ v : K, ⟪(v : E), x⟫ = ⟪(v : E), y⟫) : x = y :=
883
+ hK.eq_of_sub_mem_orthogonal (submodule.sub_mem_orthogonal_of_inner_right h)
884
+
885
+ lemma eq_zero_of_inner_right (hK : dense (K : set E))
886
+ (h : ∀ v : K, ⟪(v : E), x⟫ = 0 ) : x = 0 :=
887
+ hK.eq_of_inner_right (λ v, by rw [inner_zero_right, h v])
888
+
889
+ end dense
890
+
859
891
/-- The reflection in `Kᗮ` of an element of `K` is its negation. -/
860
892
lemma reflection_mem_subspace_orthogonal_precomplement_eq_neg
861
893
[complete_space E] {v : E} (hv : v ∈ K) :
0 commit comments