Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit f4c4d10

Browse files
RemyDegennemzinkevi
andcommitted
feat(probability_theory/independence): prove equivalences for indep_set (#6242)
Prove the following equivalences on `indep_set`, for measurable sets `s,t` and a probability measure `µ` : * `indep_set s t μ ↔ μ (s ∩ t) = μ s * μ t`, * `indep_set s t μ ↔ indep_sets {s} {t} μ`. In `indep_sets.indep_set_of_mem`, we use those equivalences to obtain `indep_set s t µ` from `indep_sets S T µ` and `s ∈ S`, `t ∈ T`. Co-authored-by: mzinkevi <martinz@google.com> Co-authored-by: mzinkevi <41597957+mzinkevi@users.noreply.github.com>
1 parent c277752 commit f4c4d10

File tree

1 file changed

+37
-0
lines changed

1 file changed

+37
-0
lines changed

src/probability_theory/independence.lean

Lines changed: 37 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
44
Author: Rémy Degenne
55
-/
66
import measure_theory.measure_space
7+
import measure_theory.pi_system
78
import algebra.big_operators.intervals
89
import data.finset.intervals
910

@@ -195,6 +196,11 @@ lemma indep_sets.Inter {α ι} [measurable_space α] {s : ι → set (set α)} {
195196
indep_sets (⋂ n, s n) s' μ :=
196197
by {intros t1 t2 ht1 ht2, cases h with n h, exact h t1 t2 (set.mem_Inter.mp ht1 n) ht2 }
197198

199+
lemma indep_sets_singleton_iff {α} [measurable_space α] {s t : set α} {μ : measure α} :
200+
indep_sets {s} {t} μ ↔ μ (s ∩ t) = μ s * μ t :=
201+
⟨λ h, h s t rfl rfl,
202+
λ h s1 t1 hs1 ht1, by rwa [set.mem_singleton_iff.mp hs1, set.mem_singleton_iff.mp ht1]⟩
203+
198204
end indep
199205

200206
/-! ### Deducing `indep` from `Indep` -/
@@ -309,4 +315,35 @@ end
309315

310316
end from_pi_systems_to_measurable_spaces
311317

318+
section indep_set
319+
/-! ### Independence of measurable sets
320+
321+
We prove the following equivalences on `indep_set`, for measurable sets `s, t`.
322+
* `indep_set s t μ ↔ μ (s ∩ t) = μ s * μ t`,
323+
* `indep_set s t μ ↔ indep_sets {s} {t} μ`.
324+
-/
325+
326+
variables {α : Type*} [measurable_space α] {s t : set α} (S T : set (set α))
327+
328+
lemma indep_set_iff_indep_sets_singleton (hs_meas : measurable_set s) (ht_meas : measurable_set t)
329+
(μ : measure α . volume_tac) [probability_measure μ] :
330+
indep_set s t μ ↔ indep_sets {s} {t} μ :=
331+
⟨indep.indep_sets, λ h, indep_sets.indep
332+
(generate_from_le (λ u hu, by rwa set.mem_singleton_iff.mp hu))
333+
(generate_from_le (λ u hu, by rwa set.mem_singleton_iff.mp hu)) (is_pi_system.singleton s)
334+
(is_pi_system.singleton t) rfl rfl h⟩
335+
336+
lemma indep_set_iff_measure_inter_eq_mul (hs_meas : measurable_set s) (ht_meas : measurable_set t)
337+
(μ : measure α . volume_tac) [probability_measure μ] :
338+
indep_set s t μ ↔ μ (s ∩ t) = μ s * μ t :=
339+
(indep_set_iff_indep_sets_singleton hs_meas ht_meas μ).trans indep_sets_singleton_iff
340+
341+
lemma indep_sets.indep_set_of_mem (hs : s ∈ S) (ht : t ∈ T) (hs_meas : measurable_set s)
342+
(ht_meas : measurable_set t) (μ : measure α . volume_tac) [probability_measure μ]
343+
(h_indep : indep_sets S T μ) :
344+
indep_set s t μ :=
345+
(indep_set_iff_measure_inter_eq_mul hs_meas ht_meas μ).mpr (h_indep s t hs ht)
346+
347+
end indep_set
348+
312349
end probability_theory

0 commit comments

Comments
 (0)