Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit f4d7205

Browse files
committed
chore(measure_theory/*): rename probability_measure and finite_measure (#8831)
Renamed to `is_probability_measure` and `is_finite_measure`, respectively. Also, `locally_finite_measure` becomes `is_locally_finite_measure`. See https://leanprover.zulipchat.com/#narrow/stream/144837-PR-reviews/topic/.238337.20Weak.20convergence
1 parent 6adb5e8 commit f4d7205

30 files changed

+225
-210
lines changed

counterexamples/phillips.lean

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -108,7 +108,7 @@ def bounded_integrable_functions [measurable_space α] (μ : measure α) :
108108
of all bounded functions on a type. This is a technical device, that we will extend through
109109
Hahn-Banach. -/
110110
def bounded_integrable_functions_integral_clm [measurable_space α]
111-
(μ : measure α) [finite_measure μ] : bounded_integrable_functions μ →L[ℝ] ℝ :=
111+
(μ : measure α) [is_finite_measure μ] : bounded_integrable_functions μ →L[ℝ] ℝ :=
112112
linear_map.mk_continuous
113113
{ to_fun := λ f, ∫ x, f x ∂μ,
114114
map_add' := λ f g, integral_add f.2 g.2,
@@ -126,7 +126,7 @@ linear_map.mk_continuous
126126
/-- Given a measure, there exists a continuous linear form on the space of all bounded functions
127127
(not necessarily measurable) that coincides with the integral on bounded measurable functions. -/
128128
lemma exists_linear_extension_to_bounded_functions
129-
[measurable_space α] (μ : measure α) [finite_measure μ] :
129+
[measurable_space α] (μ : measure α) [is_finite_measure μ] :
130130
∃ φ : (discrete_copy α →ᵇ ℝ) →L[ℝ] ℝ, ∀ (f : discrete_copy α →ᵇ ℝ),
131131
integrable f μ → φ f = ∫ x, f x ∂μ :=
132132
begin
@@ -137,11 +137,11 @@ end
137137
/-- An arbitrary extension of the integral to all bounded functions, as a continuous linear map.
138138
It is not at all canonical, and constructed using Hahn-Banach. -/
139139
def _root_.measure_theory.measure.extension_to_bounded_functions
140-
[measurable_space α] (μ : measure α) [finite_measure μ] : (discrete_copy α →ᵇ ℝ) →L[ℝ] ℝ :=
140+
[measurable_space α] (μ : measure α) [is_finite_measure μ] : (discrete_copy α →ᵇ ℝ) →L[ℝ] ℝ :=
141141
(exists_linear_extension_to_bounded_functions μ).some
142142

143-
lemma extension_to_bounded_functions_apply [measurable_space α] (μ : measure α) [finite_measure μ]
144-
(f : discrete_copy α →ᵇ ℝ) (hf : integrable f μ) :
143+
lemma extension_to_bounded_functions_apply [measurable_space α] (μ : measure α)
144+
[is_finite_measure μ] (f : discrete_copy α →ᵇ ℝ) (hf : integrable f μ) :
145145
μ.extension_to_bounded_functions f = ∫ x, f x ∂μ :=
146146
(exists_linear_extension_to_bounded_functions μ).some_spec f hf
147147

@@ -406,7 +406,7 @@ let f := (eval_clm ℝ x).to_bounded_additive_measure in calc
406406
... = indicator ((univ \ f.discrete_support) ∩ (s \ {x})) 1 x : rfl
407407
... = 0 : by simp
408408

409-
lemma to_functions_to_measure [measurable_space α] (μ : measure α) [finite_measure μ]
409+
lemma to_functions_to_measure [measurable_space α] (μ : measure α) [is_finite_measure μ]
410410
(s : set α) (hs : measurable_set s) :
411411
μ.extension_to_bounded_functions.to_bounded_additive_measure s = (μ s).to_real :=
412412
begin
@@ -423,7 +423,7 @@ begin
423423
end
424424

425425
lemma to_functions_to_measure_continuous_part [measurable_space α] [measurable_singleton_class α]
426-
(μ : measure α) [finite_measure μ] [has_no_atoms μ]
426+
(μ : measure α) [is_finite_measure μ] [has_no_atoms μ]
427427
(s : set α) (hs : measurable_set s) :
428428
μ.extension_to_bounded_functions.to_bounded_additive_measure.continuous_part s = (μ s).to_real :=
429429
begin

docs/undergrad.yaml

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -532,7 +532,7 @@ Measures and integral Calculus:
532532
# 11.
533533
Probability Theory:
534534
Definitions of a probability space:
535-
probability measure: 'measure_theory.probability_measure'
535+
probability measure: 'measure_theory.is_probability_measure'
536536
events:
537537
independent events: 'probability_theory.Indep_set'
538538
sigma-algebra: 'measurable_space'

src/analysis/convex/integral.lean

Lines changed: 11 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -46,7 +46,7 @@ variables {α E : Type*} [measurable_space α] {μ : measure α}
4646
[topological_space.second_countable_topology E] [measurable_space E] [borel_space E]
4747

4848
private lemma convex.smul_integral_mem_of_measurable
49-
[finite_measure μ] {s : set E} (hs : convex s) (hsc : is_closed s)
49+
[is_finite_measure μ] {s : set E} (hs : convex s) (hsc : is_closed s)
5050
(hμ : μ ≠ 0) {f : α → E} (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hfm : measurable f) :
5151
(μ univ).to_real⁻¹ • ∫ x, f x ∂μ ∈ s :=
5252
begin
@@ -79,7 +79,7 @@ integrable function sending `μ`-a.e. points to `s`, then the average value of `
7979
`(μ univ).to_real⁻¹ • ∫ x, f x ∂μ ∈ s`. See also `convex.center_mass_mem` for a finite sum version
8080
of this lemma. -/
8181
lemma convex.smul_integral_mem
82-
[finite_measure μ] {s : set E} (hs : convex s) (hsc : is_closed s)
82+
[is_finite_measure μ] {s : set E} (hs : convex s) (hsc : is_closed s)
8383
(hμ : μ ≠ 0) {f : α → E} (hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) :
8484
(μ univ).to_real⁻¹ • ∫ x, f x ∂μ ∈ s :=
8585
begin
@@ -96,19 +96,19 @@ end
9696
/-- If `μ` is a probability measure on `α`, `s` is a convex closed set in `E`, and `f` is an
9797
integrable function sending `μ`-a.e. points to `s`, then the expected value of `f` belongs to `s`:
9898
`∫ x, f x ∂μ ∈ s`. See also `convex.sum_mem` for a finite sum version of this lemma. -/
99-
lemma convex.integral_mem [probability_measure μ] {s : set E} (hs : convex s) (hsc : is_closed s)
99+
lemma convex.integral_mem [is_probability_measure μ] {s : set E} (hs : convex s) (hsc : is_closed s)
100100
{f : α → E} (hf : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) :
101101
∫ x, f x ∂μ ∈ s :=
102-
by simpa [measure_univ] using hs.smul_integral_mem hsc (probability_measure.ne_zero μ) hf hfi
102+
by simpa [measure_univ] using hs.smul_integral_mem hsc (is_probability_measure.ne_zero μ) hf hfi
103103

104104
/-- Jensen's inequality: if a function `g : E → ℝ` is convex and continuous on a convex closed set
105105
`s`, `μ` is a finite non-zero measure on `α`, and `f : α → E` is a function sending `μ`-a.e. points
106106
to `s`, then the value of `g` at the average value of `f` is less than or equal to the average value
107107
of `g ∘ f` provided that both `f` and `g ∘ f` are integrable. See also `convex.map_center_mass_le`
108108
for a finite sum version of this lemma. -/
109-
lemma convex_on.map_smul_integral_le [finite_measure μ] {s : set E} {g : E → ℝ} (hg : convex_on s g)
110-
(hgc : continuous_on g s) (hsc : is_closed s) (hμ : μ ≠ 0) {f : α → E} (hfs : ∀ᵐ x ∂μ, f x ∈ s)
111-
(hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) :
109+
lemma convex_on.map_smul_integral_le [is_finite_measure μ] {s : set E} {g : E → ℝ}
110+
(hg : convex_on s g) (hgc : continuous_on g s) (hsc : is_closed s) (hμ : μ ≠ 0) {f : α → E}
111+
(hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) :
112112
g ((μ univ).to_real⁻¹ • ∫ x, f x ∂μ) ≤ (μ univ).to_real⁻¹ • ∫ x, g (f x) ∂μ :=
113113
begin
114114
set t := {p : E × ℝ | p.1 ∈ s ∧ g p.1 ≤ p.2},
@@ -126,9 +126,9 @@ end
126126
`s`, then the value of `g` at the expected value of `f` is less than or equal to the expected value
127127
of `g ∘ f` provided that both `f` and `g ∘ f` are integrable. See also `convex.map_sum_le` for a
128128
finite sum version of this lemma. -/
129-
lemma convex_on.map_integral_le [probability_measure μ] {s : set E} {g : E → ℝ} (hg : convex_on s g)
130-
(hgc : continuous_on g s) (hsc : is_closed s) {f : α → E} (hfs : ∀ᵐ x ∂μ, f x ∈ s)
131-
(hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) :
129+
lemma convex_on.map_integral_le [is_probability_measure μ] {s : set E} {g : E → ℝ}
130+
(hg : convex_on s g) (hgc : continuous_on g s) (hsc : is_closed s) {f : α → E}
131+
(hfs : ∀ᵐ x ∂μ, f x ∈ s) (hfi : integrable f μ) (hgi : integrable (g ∘ f) μ) :
132132
g (∫ x, f x ∂μ) ≤ ∫ x, g (f x) ∂μ :=
133133
by simpa [measure_univ]
134-
using hg.map_smul_integral_le hgc hsc (probability_measure.ne_zero μ) hfs hfi hgi
134+
using hg.map_smul_integral_le hgc hsc (is_probability_measure.ne_zero μ) hfs hfi hgi

src/analysis/fourier.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,7 @@ This file contains basic technical results for a development of Fourier series.
1919
## Main definitions
2020
2121
* `haar_circle`, Haar measure on the circle, normalized to have total measure `1`
22-
* instances `measure_space`, `probability_measure` for the circle with respect to this measure
22+
* instances `measure_space`, `is_probability_measure` for the circle with respect to this measure
2323
* for `n : ℤ`, `fourier n` is the monomial `λ z, z ^ n`, bundled as a continuous map from `circle`
2424
to `ℂ`
2525
* for `n : ℤ` and `p : ℝ≥0∞`, `fourier_Lp p n` is an abbreviation for the monomial `fourier n`
@@ -71,7 +71,7 @@ instance : borel_space circle := ⟨rfl⟩
7171
/-- Haar measure on the circle, normalized to have total measure 1. -/
7272
def haar_circle : measure circle := haar_measure positive_compacts_univ
7373

74-
instance : probability_measure haar_circle := ⟨haar_measure_self⟩
74+
instance : is_probability_measure haar_circle := ⟨haar_measure_self⟩
7575

7676
instance : measure_space circle :=
7777
{ volume := haar_circle,
@@ -198,7 +198,7 @@ begin
198198
intros i j,
199199
rw continuous_map.inner_to_Lp haar_circle (fourier i) (fourier j),
200200
split_ifs,
201-
{ simp [h, probability_measure.measure_univ, ← fourier_neg, ← fourier_add, -fourier_to_fun] },
201+
{ simp [h, is_probability_measure.measure_univ, ← fourier_neg, ← fourier_add, -fourier_to_fun] },
202202
simp only [← fourier_add, ← fourier_neg, is_R_or_C.conj_to_complex],
203203
have hij : -i + j ≠ 0,
204204
{ rw add_comm,

src/analysis/special_functions/integrals.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -35,7 +35,7 @@ variables {a b : ℝ} (n : ℕ)
3535

3636
namespace interval_integral
3737
open measure_theory
38-
variables {f : ℝ → ℝ} {μ ν : measure ℝ} [locally_finite_measure μ] (c d : ℝ)
38+
variables {f : ℝ → ℝ} {μ ν : measure ℝ} [is_locally_finite_measure μ] (c d : ℝ)
3939

4040
/-! ### Interval integrability -/
4141

src/dynamics/ergodic/conservative.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -53,7 +53,8 @@ structure conservative (f : α → α) (μ : measure α . volume_tac)
5353
(exists_mem_image_mem : ∀ ⦃s⦄, measurable_set s → μ s ≠ 0 → ∃ (x ∈ s) (m ≠ 0), f^[m] x ∈ s)
5454

5555
/-- A self-map preserving a finite measure is conservative. -/
56-
protected lemma measure_preserving.conservative [finite_measure μ] (h : measure_preserving f μ μ) :
56+
protected lemma measure_preserving.conservative [is_finite_measure μ]
57+
(h : measure_preserving f μ μ) :
5758
conservative f μ :=
5859
⟨h.quasi_measure_preserving, λ s hsm h0, h.exists_mem_image_mem hsm h0⟩
5960

src/dynamics/ergodic/measure_preserving.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -134,7 +134,7 @@ end
134134
`x ∈ s` comes back to `s` under iterations of `f`. Actually, a.e. point of `s` comes back to `s`
135135
infinitely many times, see `measure_theory.measure_preserving.conservative` and theorems about
136136
`measure_theory.conservative`. -/
137-
lemma exists_mem_image_mem [finite_measure μ] (hf : measure_preserving f μ μ)
137+
lemma exists_mem_image_mem [is_finite_measure μ] (hf : measure_preserving f μ μ)
138138
(hs : measurable_set s) (hs' : μ s ≠ 0) :
139139
∃ (x ∈ s) (m ≠ 0), f^[m] x ∈ s :=
140140
begin

src/measure_theory/constructions/borel_space.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1088,7 +1088,7 @@ by simpa using is_pi_system_Ioo (coe : ℚ → ℝ)
10881088

10891089
/-- The intervals `(-(n + 1), (n + 1))` form a finite spanning sets in the set of open intervals
10901090
with rational endpoints for a locally finite measure `μ` on `ℝ`. -/
1091-
def finite_spanning_sets_in_Ioo_rat (μ : measure ℝ) [locally_finite_measure μ] :
1091+
def finite_spanning_sets_in_Ioo_rat (μ : measure ℝ) [is_locally_finite_measure μ] :
10921092
μ.finite_spanning_sets_in (⋃ (a b : ℚ) (h : a < b), {Ioo a b}) :=
10931093
{ set := λ n, Ioo (-(n + 1)) (n + 1),
10941094
set_mem := λ n,
@@ -1099,12 +1099,12 @@ def finite_spanning_sets_in_Ioo_rat (μ : measure ℝ) [locally_finite_measure
10991099
end,
11001100
finite := λ n,
11011101
calc μ (Ioo _ _) ≤ μ (Icc _ _) : μ.mono Ioo_subset_Icc_self
1102-
... < ∞ : is_compact_Icc.finite_measure,
1102+
... < ∞ : is_compact_Icc.is_finite_measure,
11031103
spanning := Union_eq_univ_iff.2 $ λ x,
11041104
⟨⌊abs x⌋₊, neg_lt.1 ((neg_le_abs_self x).trans_lt (lt_nat_floor_add_one _)),
11051105
(le_abs_self x).trans_lt (lt_nat_floor_add_one _)⟩ }
11061106

1107-
lemma measure_ext_Ioo_rat {μ ν : measure ℝ} [locally_finite_measure μ]
1107+
lemma measure_ext_Ioo_rat {μ ν : measure ℝ} [is_locally_finite_measure μ]
11081108
(h : ∀ a b : ℚ, μ (Ioo a b) = ν (Ioo a b)) : μ = ν :=
11091109
(finite_spanning_sets_in_Ioo_rat μ).ext borel_eq_generate_from_Ioo_rat is_pi_system_Ioo_rat $
11101110
by { simp only [mem_Union, mem_singleton_iff], rintro _ ⟨a, b, -, rfl⟩, apply h }
@@ -1595,6 +1595,6 @@ is_compact.induction_on h (by simp) (λ s t hst ht, (measure_mono hst).trans_lt
15951595
(λ s t hs ht, (measure_union_le s t).trans_lt (ennreal.add_lt_top.2 ⟨hs, ht⟩)) hμ
15961596

15971597
lemma is_compact.measure_lt_top [topological_space α] {s : set α} {μ : measure α}
1598-
[locally_finite_measure μ] (h : is_compact s) :
1598+
[is_locally_finite_measure μ] (h : is_compact s) :
15991599
μ s < ∞ :=
16001600
h.measure_lt_top_of_nhds_within $ λ x hx, μ.finite_at_nhds_within _ _

src/measure_theory/constructions/pi.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -486,8 +486,8 @@ instance [h : nonempty ι] [∀ i, has_no_atoms (μ i)] : has_no_atoms (measure.
486486
h.elim $ λ i, pi_has_no_atoms i
487487

488488
instance [Π i, topological_space (α i)] [∀ i, opens_measurable_space (α i)]
489-
[∀ i, locally_finite_measure (μ i)] :
490-
locally_finite_measure (measure.pi μ) :=
489+
[∀ i, is_locally_finite_measure (μ i)] :
490+
is_locally_finite_measure (measure.pi μ) :=
491491
begin
492492
refine ⟨λ x, _⟩,
493493
choose s hxs ho hμ using λ i, (μ i).exists_is_open_measure_lt_top (x i),

src/measure_theory/constructions/prod.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -145,7 +145,7 @@ is_pi_system_measurable_set.prod is_pi_system_measurable_set
145145

146146
/-- If `ν` is a finite measure, and `s ⊆ α × β` is measurable, then `x ↦ ν { y | (x, y) ∈ s }` is
147147
a measurable function. `measurable_measure_prod_mk_left` is strictly more general. -/
148-
lemma measurable_measure_prod_mk_left_finite [finite_measure ν] {s : set (α × β)}
148+
lemma measurable_measure_prod_mk_left_finite [is_finite_measure ν] {s : set (α × β)}
149149
(hs : measurable_set s) : measurable (λ x, ν (prod.mk x ⁻¹' s)) :=
150150
begin
151151
refine induction_on_inter generate_from_prod.symm is_pi_system_prod _ _ _ _ hs,

0 commit comments

Comments
 (0)