Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit f585481

Browse files
committed
feat(data/set/prod): add lemmas about set.pi (#16828)
1 parent 666d878 commit f585481

File tree

3 files changed

+23
-12
lines changed

3 files changed

+23
-12
lines changed

src/data/set/basic.lean

Lines changed: 5 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -888,6 +888,11 @@ ssubset_singleton_iff.1 hs
888888

889889
/-! ### Disjointness -/
890890

891+
protected theorem disjoint_iff : disjoint s t ↔ s ∩ t ⊆ ∅ := iff.rfl
892+
893+
theorem disjoint_iff_inter_eq_empty : disjoint s t ↔ s ∩ t = ∅ :=
894+
disjoint_iff
895+
891896
lemma _root_.disjoint.inter_eq : disjoint s t → s ∩ t = ∅ := disjoint.eq_bot
892897

893898
lemma disjoint_left : disjoint s t ↔ ∀ ⦃a⦄, a ∈ s → a ∉ t := forall_congr $ λ _, not_and

src/data/set/lattice.lean

Lines changed: 0 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -1579,11 +1579,6 @@ end disjoint
15791579

15801580
namespace set
15811581

1582-
protected theorem disjoint_iff : disjoint s t ↔ s ∩ t ⊆ ∅ := iff.rfl
1583-
1584-
theorem disjoint_iff_inter_eq_empty : disjoint s t ↔ s ∩ t = ∅ :=
1585-
disjoint_iff
1586-
15871582
lemma not_disjoint_iff : ¬disjoint s t ↔ ∃ x, x ∈ s ∧ x ∈ t :=
15881583
not_forall.trans $ exists_congr $ λ x, not_not
15891584

src/data/set/prod.lean

Lines changed: 18 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -430,20 +430,19 @@ lemma pi_eq_empty_iff : s.pi t = ∅ ↔ ∃ i, is_empty (α i) ∨ i ∈ s ∧
430430
begin
431431
rw [← not_nonempty_iff_eq_empty, pi_nonempty_iff],
432432
push_neg,
433-
refine exists_congr (λ i, ⟨λ h, (is_empty_or_nonempty (α i)).imp_right _, _⟩),
434-
{ rintro ⟨x⟩,
435-
exact ⟨(h x).1, by simp [eq_empty_iff_forall_not_mem, h]⟩ },
436-
{ rintro (h | h) x,
437-
{ exact h.elim' x },
438-
{ simp [h] } }
433+
refine exists_congr (λ i, _),
434+
casesI is_empty_or_nonempty (α i); simp [*, forall_and_distrib, eq_empty_iff_forall_not_mem],
439435
end
440436

441-
lemma univ_pi_eq_empty_iff : pi univ t = ∅ ↔ ∃ i, t i = ∅ :=
437+
@[simp] lemma univ_pi_eq_empty_iff : pi univ t = ∅ ↔ ∃ i, t i = ∅ :=
442438
by simp [← not_nonempty_iff_eq_empty, univ_pi_nonempty_iff]
443439

444440
@[simp] lemma univ_pi_empty [h : nonempty ι] : pi univ (λ i, ∅ : Π i, set (α i)) = ∅ :=
445441
univ_pi_eq_empty_iff.2 $ h.elim $ λ x, ⟨x, rfl⟩
446442

443+
@[simp] lemma disjoint_univ_pi : disjoint (pi univ t₁) (pi univ t₂) ↔ ∃ i, disjoint (t₁ i) (t₂ i) :=
444+
by simp only [disjoint_iff_inter_eq_empty, ← pi_inter_distrib, univ_pi_eq_empty_iff]
445+
447446
@[simp] lemma range_dcomp (f : Π i, α i → β i) :
448447
range (λ (g : Π i, α i), (λ i, f i (g i))) = pi univ (λ i, range (f i)) :=
449448
begin
@@ -525,6 +524,18 @@ lemma eval_image_pi (hs : i ∈ s) (ht : (s.pi t).nonempty) : eval i '' s.pi t =
525524
(λ f : Π i, α i, f i) '' pi univ t = t i :=
526525
eval_image_pi (mem_univ i) ht
527526

527+
lemma pi_subset_pi_iff : pi s t₁ ⊆ pi s t₂ ↔ (∀ i ∈ s, t₁ i ⊆ t₂ i) ∨ pi s t₁ = ∅ :=
528+
begin
529+
refine ⟨λ h, or_iff_not_imp_right.2 _, λ h, h.elim pi_mono (λ h', h'.symm ▸ empty_subset _)⟩,
530+
rw [← ne.def, ne_empty_iff_nonempty],
531+
intros hne i hi,
532+
simpa only [eval_image_pi hi hne, eval_image_pi hi (hne.mono h)]
533+
using image_subset (λ f : Π i, α i, f i) h
534+
end
535+
536+
lemma univ_pi_subset_univ_pi_iff : pi univ t₁ ⊆ pi univ t₂ ↔ (∀ i, t₁ i ⊆ t₂ i) ∨ ∃ i, t₁ i = ∅ :=
537+
by simp [pi_subset_pi_iff]
538+
528539
lemma eval_preimage [decidable_eq ι] {s : set (α i)} :
529540
eval i ⁻¹' s = pi univ (update (λ i, univ) i s) :=
530541
by { ext x, simp [@forall_update_iff _ (λ i, set (α i)) _ _ _ _ (λ i' y, x i' ∈ y)] }

0 commit comments

Comments
 (0)