@@ -235,7 +235,7 @@ def module_equiv_finsupp (hv : is_basis R v) : M ≃ₗ[R] ι →₀ R :=
235
235
236
236
/-- Isomorphism between the two modules, given two modules `M` and `M'` with respective bases
237
237
`v` and `v'` and a bijection between the indexing sets of the two bases. -/
238
- def equiv_of_is_basis {v : ι → M} {v' : ι' → M'} (hv : is_basis R v) (hv' : is_basis R v')
238
+ def linear_equiv_of_is_basis {v : ι → M} {v' : ι' → M'} (hv : is_basis R v) (hv' : is_basis R v')
239
239
(e : ι ≃ ι') : M ≃ₗ[R] M' :=
240
240
{ inv_fun := hv'.constr (v ∘ e.symm),
241
241
left_inv := have (hv'.constr (v ∘ e.symm)).comp (hv.constr (v' ∘ e)) = linear_map.id,
@@ -248,7 +248,7 @@ def equiv_of_is_basis {v : ι → M} {v' : ι' → M'} (hv : is_basis R v) (hv'
248
248
249
249
/-- Isomorphism between the two modules, given two modules `M` and `M'` with respective bases
250
250
`v` and `v'` and a bijection between the two bases. -/
251
- def equiv_of_is_basis ' {v : ι → M} {v' : ι' → M'} (f : M → M') (g : M' → M)
251
+ def linear_equiv_of_is_basis ' {v : ι → M} {v' : ι' → M'} (f : M → M') (g : M' → M)
252
252
(hv : is_basis R v) (hv' : is_basis R v')
253
253
(hf : ∀i, f (v i) ∈ range v') (hg : ∀i, g (v' i) ∈ range v)
254
254
(hgf : ∀i, g (f (v i)) = v i) (hfg : ∀i, f (g (v' i)) = v' i) :
@@ -266,33 +266,33 @@ def equiv_of_is_basis' {v : ι → M} {v' : ι' → M'} (f : M → M') (g : M'
266
266
λ y, congr_arg (λ h:M' →ₗ[R] M', h y) this ,
267
267
..hv.constr (f ∘ v) }
268
268
269
- @[simp] lemma equiv_of_is_basis_comp {ι'' : Type *} {v : ι → M} {v' : ι' → M'} {v'' : ι'' → M' '}
270
- (hv : is_basis R v) (hv' : is_basis R v') (hv'' : is_basis R v'')
269
+ @[simp] lemma linear_equiv_of_is_basis_comp {ι'' : Type *} {v : ι → M} {v' : ι' → M'}
270
+ {v'' : ι'' → M''} (hv : is_basis R v) (hv' : is_basis R v') (hv'' : is_basis R v'')
271
271
(e : ι ≃ ι') (f : ι' ≃ ι'' ) :
272
- (equiv_of_is_basis hv hv' e).trans (equiv_of_is_basis hv' hv'' f) =
273
- equiv_of_is_basis hv hv'' (e.trans f) :=
272
+ (linear_equiv_of_is_basis hv hv' e).trans (linear_equiv_of_is_basis hv' hv'' f) =
273
+ linear_equiv_of_is_basis hv hv'' (e.trans f) :=
274
274
begin
275
275
apply linear_equiv.injective_to_linear_map,
276
276
apply hv.ext,
277
277
intros i,
278
- simp [equiv_of_is_basis ]
278
+ simp [linear_equiv_of_is_basis ]
279
279
end
280
280
281
- @[simp] lemma equiv_of_is_basis_refl :
282
- equiv_of_is_basis hv hv (equiv.refl ι) = linear_equiv.refl R M :=
281
+ @[simp] lemma linear_equiv_of_is_basis_refl :
282
+ linear_equiv_of_is_basis hv hv (equiv.refl ι) = linear_equiv.refl R M :=
283
283
begin
284
284
apply linear_equiv.injective_to_linear_map,
285
285
apply hv.ext,
286
286
intros i,
287
- simp [equiv_of_is_basis ]
287
+ simp [linear_equiv_of_is_basis ]
288
288
end
289
289
290
- lemma equiv_of_is_basis_trans_symm (e : ι ≃ ι') {v' : ι' → M'} (hv' : is_basis R v') :
291
- (equiv_of_is_basis hv hv' e).trans (equiv_of_is_basis hv' hv e.symm) = linear_equiv.refl R M :=
290
+ lemma linear_equiv_of_is_basis_trans_symm (e : ι ≃ ι') {v' : ι' → M'} (hv' : is_basis R v') :
291
+ (linear_equiv_of_is_basis hv hv' e).trans (linear_equiv_of_is_basis hv' hv e.symm) = linear_equiv.refl R M :=
292
292
by simp
293
293
294
- lemma equiv_of_is_basis_symm_trans (e : ι ≃ ι') {v' : ι' → M'} (hv' : is_basis R v') :
295
- (equiv_of_is_basis hv' hv e.symm).trans (equiv_of_is_basis hv hv' e) = linear_equiv.refl R M' :=
294
+ lemma linear_equiv_of_is_basis_symm_trans (e : ι ≃ ι') {v' : ι' → M'} (hv' : is_basis R v') :
295
+ (linear_equiv_of_is_basis hv' hv e.symm).trans (linear_equiv_of_is_basis hv hv' e) = linear_equiv.refl R M' :=
296
296
by simp
297
297
298
298
lemma is_basis_inl_union_inr {v : ι → M} {v' : ι' → M'}
0 commit comments