Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit f6b1276

Browse files
committed
feat(topology/algebra/infinite_sum): generalize tsum_le_of_sum_range_le (#16951)
1 parent e623a7e commit f6b1276

File tree

2 files changed

+18
-4
lines changed

2 files changed

+18
-4
lines changed

src/topology/algebra/infinite_sum.lean

Lines changed: 11 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1395,6 +1395,17 @@ end
13951395

13961396
end topological_group
13971397

1398+
section preorder
1399+
1400+
variables {E : Type*} [preorder E] [add_comm_monoid E]
1401+
[topological_space E] [order_closed_topology E] [t2_space E]
1402+
1403+
lemma tsum_le_of_sum_range_le {f : ℕ → E} {c : E} (hsum : summable f)
1404+
(h : ∀ n, ∑ i in finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
1405+
let ⟨l, hl⟩ := hsum in hl.tsum_eq.symm ▸ le_of_tendsto' hl.tendsto_sum_nat h
1406+
1407+
end preorder
1408+
13981409
section linear_order
13991410

14001411
/-! For infinite sums taking values in a linearly ordered monoid, the existence of a least upper

src/topology/instances/ennreal.lean

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1055,7 +1055,7 @@ end
10551055

10561056
lemma tsum_le_of_sum_range_le {f : ℕ → ℝ≥0} {c : ℝ≥0}
10571057
(h : ∀ n, ∑ i in finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
1058-
le_of_tendsto' (has_sum_iff_tendsto_nat.1 (summable_of_sum_range_le h).has_sum) h
1058+
tsum_le_of_sum_range_le (summable_of_sum_range_le h) h
10591059

10601060
lemma tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ≥0} (hf : summable f)
10611061
{i : β → α} (hi : function.injective i) : ∑' x, f (i x) ≤ ∑' x, f x :=
@@ -1145,6 +1145,10 @@ begin
11451145
exact_mod_cast nnreal.tendsto_sum_nat_add f
11461146
end
11471147

1148+
lemma tsum_le_of_sum_range_le {f : ℕ → ℝ≥0∞} {c : ℝ≥0∞}
1149+
(h : ∀ n, ∑ i in finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
1150+
tsum_le_of_sum_range_le ennreal.summable h
1151+
11481152
end ennreal
11491153

11501154
lemma tsum_comp_le_tsum_of_inj {β : Type*} {f : α → ℝ} (hf : summable f) (hn : ∀ a, 0 ≤ f a)
@@ -1209,10 +1213,9 @@ begin
12091213
exact lt_irrefl _ (hn.trans_le (h n)),
12101214
end
12111215

1212-
lemma tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
1216+
lemma real.tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
12131217
(h : ∀ n, ∑ i in finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
1214-
le_of_tendsto' ((has_sum_iff_tendsto_nat_of_nonneg hf _).1
1215-
(summable_of_sum_range_le hf h).has_sum) h
1218+
tsum_le_of_sum_range_le (summable_of_sum_range_le hf h) h
12161219

12171220
/-- If a sequence `f` with non-negative terms is dominated by a sequence `g` with summable
12181221
series and at least one term of `f` is strictly smaller than the corresponding term in `g`,

0 commit comments

Comments
 (0)