@@ -1055,7 +1055,7 @@ end
1055
1055
1056
1056
lemma tsum_le_of_sum_range_le {f : ℕ → ℝ≥0 } {c : ℝ≥0 }
1057
1057
(h : ∀ n, ∑ i in finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
1058
- le_of_tendsto' (has_sum_iff_tendsto_nat. 1 ( summable_of_sum_range_le h).has_sum ) h
1058
+ tsum_le_of_sum_range_le ( summable_of_sum_range_le h) h
1059
1059
1060
1060
lemma tsum_comp_le_tsum_of_inj {β : Type *} {f : α → ℝ≥0 } (hf : summable f)
1061
1061
{i : β → α} (hi : function.injective i) : ∑' x, f (i x) ≤ ∑' x, f x :=
@@ -1145,6 +1145,10 @@ begin
1145
1145
exact_mod_cast nnreal.tendsto_sum_nat_add f
1146
1146
end
1147
1147
1148
+ lemma tsum_le_of_sum_range_le {f : ℕ → ℝ≥0 ∞} {c : ℝ≥0 ∞}
1149
+ (h : ∀ n, ∑ i in finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
1150
+ tsum_le_of_sum_range_le ennreal.summable h
1151
+
1148
1152
end ennreal
1149
1153
1150
1154
lemma tsum_comp_le_tsum_of_inj {β : Type *} {f : α → ℝ} (hf : summable f) (hn : ∀ a, 0 ≤ f a)
@@ -1209,10 +1213,9 @@ begin
1209
1213
exact lt_irrefl _ (hn.trans_le (h n)),
1210
1214
end
1211
1215
1212
- lemma tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
1216
+ lemma real. tsum_le_of_sum_range_le {f : ℕ → ℝ} {c : ℝ} (hf : ∀ n, 0 ≤ f n)
1213
1217
(h : ∀ n, ∑ i in finset.range n, f i ≤ c) : ∑' n, f n ≤ c :=
1214
- le_of_tendsto' ((has_sum_iff_tendsto_nat_of_nonneg hf _).1
1215
- (summable_of_sum_range_le hf h).has_sum) h
1218
+ tsum_le_of_sum_range_le (summable_of_sum_range_le hf h) h
1216
1219
1217
1220
/-- If a sequence `f` with non-negative terms is dominated by a sequence `g` with summable
1218
1221
series and at least one term of `f` is strictly smaller than the corresponding term in `g`,
0 commit comments