Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit fa65282

Browse files
chore(category_theory/monoidal): fix typo in docstrings (#4625)
Co-authored-by: Bryan Gin-ge Chen <bryangingechen@gmail.com>
1 parent 2e1129e commit fa65282

File tree

1 file changed

+12
-7
lines changed

1 file changed

+12
-7
lines changed

src/category_theory/monoidal/category.lean

Lines changed: 12 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -133,7 +133,8 @@ notation `ρ_` := right_unitor
133133

134134
/-- The tensor product of two isomorphisms is an isomorphism. -/
135135
@[simps]
136-
def tensor_iso {C : Type u} {X Y X' Y' : C} [category.{v} C] [monoidal_category.{v} C] (f : X ≅ Y) (g : X' ≅ Y') :
136+
def tensor_iso {C : Type u} {X Y X' Y' : C} [category.{v} C] [monoidal_category.{v} C]
137+
(f : X ≅ Y) (g : X' ≅ Y') :
137138
X ⊗ X' ≅ Y ⊗ Y' :=
138139
{ hom := f.hom ⊗ g.hom,
139140
inv := f.inv ⊗ g.inv,
@@ -148,7 +149,8 @@ section
148149

149150
variables {C : Type u} [category.{v} C] [monoidal_category.{v} C]
150151

151-
instance tensor_is_iso {W X Y Z : C} (f : W ⟶ X) [is_iso f] (g : Y ⟶ Z) [is_iso g] : is_iso (f ⊗ g) :=
152+
instance tensor_is_iso {W X Y Z : C} (f : W ⟶ X) [is_iso f] (g : Y ⟶ Z) [is_iso g] :
153+
is_iso (f ⊗ g) :=
152154
{ ..(as_iso f ⊗ as_iso g) }
153155

154156
@[simp] lemma inv_tensor {W X Y Z : C} (f : W ⟶ X) [is_iso f] (g : Y ⟶ Z) [is_iso g] :
@@ -163,7 +165,8 @@ variables {U V W X Y Z : C}
163165
-- monoidal_category.pentagon monoidal_category.triangle
164166

165167
-- tensor_comp_id tensor_id_comp comp_id_tensor_tensor_id
166-
-- triangle_assoc_comp_left triangle_assoc_comp_right triangle_assoc_comp_left_inv triangle_assoc_comp_right_inv
168+
-- triangle_assoc_comp_left triangle_assoc_comp_right
169+
-- triangle_assoc_comp_left_inv triangle_assoc_comp_right_inv
167170
-- left_unitor_tensor left_unitor_tensor_inv
168171
-- right_unitor_tensor right_unitor_tensor_inv
169172
-- pentagon_inv
@@ -204,11 +207,13 @@ begin
204207
end
205208

206209
@[simp]
207-
lemma right_unitor_conjugation {X Y : C} (f : X ⟶ Y) : (ρ_ X).inv ≫ (f ⊗ (𝟙 (𝟙_ C))) ≫ (ρ_ Y).hom = f :=
210+
lemma right_unitor_conjugation {X Y : C} (f : X ⟶ Y) :
211+
(ρ_ X).inv ≫ (f ⊗ (𝟙 (𝟙_ C))) ≫ (ρ_ Y).hom = f :=
208212
by rw [right_unitor_naturality, ←category.assoc, iso.inv_hom_id, category.id_comp]
209213

210214
@[simp]
211-
lemma left_unitor_conjugation {X Y : C} (f : X ⟶ Y) : (λ_ X).inv ≫ ((𝟙 (𝟙_ C)) ⊗ f) ≫ (λ_ Y).hom = f :=
215+
lemma left_unitor_conjugation {X Y : C} (f : X ⟶ Y) :
216+
(λ_ X).inv ≫ ((𝟙 (𝟙_ C)) ⊗ f) ≫ (λ_ Y).hom = f :=
212217
by rw [left_unitor_naturality, ←category.assoc, iso.inv_hom_id, category.id_comp]
213218

214219
@[simp] lemma tensor_left_iff
@@ -468,7 +473,7 @@ nat_iso.of_components
468473
section
469474
variables {C}
470475

471-
/-- Tensoring on the left with as fixed object, as a functor. -/
476+
/-- Tensoring on the left with a fixed object, as a functor. -/
472477
@[simps]
473478
def tensor_left (X : C) : C ⥤ C :=
474479
{ obj := λ Y, X ⊗ Y,
@@ -490,7 +495,7 @@ rfl
490495
(tensor_left_tensor X Y).inv.app Z = (associator X Y Z).inv :=
491496
rfl
492497

493-
/-- Tensoring on the right with as fixed object, as a functor. -/
498+
/-- Tensoring on the right with a fixed object, as a functor. -/
494499
@[simps]
495500
def tensor_right (X : C) : C ⥤ C :=
496501
{ obj := λ Y, Y ⊗ X,

0 commit comments

Comments
 (0)