@@ -133,7 +133,8 @@ notation `ρ_` := right_unitor
133
133
134
134
/-- The tensor product of two isomorphisms is an isomorphism. -/
135
135
@[simps]
136
- def tensor_iso {C : Type u} {X Y X' Y' : C} [category.{v} C] [monoidal_category.{v} C] (f : X ≅ Y) (g : X' ≅ Y') :
136
+ def tensor_iso {C : Type u} {X Y X' Y' : C} [category.{v} C] [monoidal_category.{v} C]
137
+ (f : X ≅ Y) (g : X' ≅ Y') :
137
138
X ⊗ X' ≅ Y ⊗ Y' :=
138
139
{ hom := f.hom ⊗ g.hom,
139
140
inv := f.inv ⊗ g.inv,
@@ -148,7 +149,8 @@ section
148
149
149
150
variables {C : Type u} [category.{v} C] [monoidal_category.{v} C]
150
151
151
- instance tensor_is_iso {W X Y Z : C} (f : W ⟶ X) [is_iso f] (g : Y ⟶ Z) [is_iso g] : is_iso (f ⊗ g) :=
152
+ instance tensor_is_iso {W X Y Z : C} (f : W ⟶ X) [is_iso f] (g : Y ⟶ Z) [is_iso g] :
153
+ is_iso (f ⊗ g) :=
152
154
{ ..(as_iso f ⊗ as_iso g) }
153
155
154
156
@[simp] lemma inv_tensor {W X Y Z : C} (f : W ⟶ X) [is_iso f] (g : Y ⟶ Z) [is_iso g] :
@@ -163,7 +165,8 @@ variables {U V W X Y Z : C}
163
165
-- monoidal_category.pentagon monoidal_category.triangle
164
166
165
167
-- tensor_comp_id tensor_id_comp comp_id_tensor_tensor_id
166
- -- triangle_assoc_comp_left triangle_assoc_comp_right triangle_assoc_comp_left_inv triangle_assoc_comp_right_inv
168
+ -- triangle_assoc_comp_left triangle_assoc_comp_right
169
+ -- triangle_assoc_comp_left_inv triangle_assoc_comp_right_inv
167
170
-- left_unitor_tensor left_unitor_tensor_inv
168
171
-- right_unitor_tensor right_unitor_tensor_inv
169
172
-- pentagon_inv
@@ -204,11 +207,13 @@ begin
204
207
end
205
208
206
209
@[simp]
207
- lemma right_unitor_conjugation {X Y : C} (f : X ⟶ Y) : (ρ_ X).inv ≫ (f ⊗ (𝟙 (𝟙_ C))) ≫ (ρ_ Y).hom = f :=
210
+ lemma right_unitor_conjugation {X Y : C} (f : X ⟶ Y) :
211
+ (ρ_ X).inv ≫ (f ⊗ (𝟙 (𝟙_ C))) ≫ (ρ_ Y).hom = f :=
208
212
by rw [right_unitor_naturality, ←category.assoc, iso.inv_hom_id, category.id_comp]
209
213
210
214
@[simp]
211
- lemma left_unitor_conjugation {X Y : C} (f : X ⟶ Y) : (λ_ X).inv ≫ ((𝟙 (𝟙_ C)) ⊗ f) ≫ (λ_ Y).hom = f :=
215
+ lemma left_unitor_conjugation {X Y : C} (f : X ⟶ Y) :
216
+ (λ_ X).inv ≫ ((𝟙 (𝟙_ C)) ⊗ f) ≫ (λ_ Y).hom = f :=
212
217
by rw [left_unitor_naturality, ←category.assoc, iso.inv_hom_id, category.id_comp]
213
218
214
219
@[simp] lemma tensor_left_iff
@@ -468,7 +473,7 @@ nat_iso.of_components
468
473
section
469
474
variables {C}
470
475
471
- /-- Tensoring on the left with as fixed object, as a functor. -/
476
+ /-- Tensoring on the left with a fixed object, as a functor. -/
472
477
@[simps]
473
478
def tensor_left (X : C) : C ⥤ C :=
474
479
{ obj := λ Y, X ⊗ Y,
490
495
(tensor_left_tensor X Y).inv.app Z = (associator X Y Z).inv :=
491
496
rfl
492
497
493
- /-- Tensoring on the right with as fixed object, as a functor. -/
498
+ /-- Tensoring on the right with a fixed object, as a functor. -/
494
499
@[simps]
495
500
def tensor_right (X : C) : C ⥤ C :=
496
501
{ obj := λ Y, Y ⊗ X,
0 commit comments