@@ -131,13 +131,6 @@ show rat.nonneg a ↔ rat.nonneg (a - 0), by simp
131
131
theorem num_nonneg_iff_zero_le : ∀ {a : ℚ}, 0 ≤ a.num ↔ 0 ≤ a
132
132
| ⟨n, d, h, c⟩ := @nonneg_iff_zero_le ⟨n, d, h, c⟩
133
133
134
- theorem mk_le {a b c d : ℤ} (h₁ : b > 0 ) (h₂ : d > 0 ) :
135
- a /. b ≤ c /. d ↔ a * d ≤ c * b :=
136
- by conv in (_ ≤ _) {
137
- simp only [(≤), rat.le],
138
- rw [sub_def (ne_of_gt h₂) (ne_of_gt h₁),
139
- mk_nonneg _ (mul_pos h₂ h₁), ge, sub_nonneg] }
140
-
141
134
protected theorem add_le_add_left {a b c : ℚ} : c + a ≤ c + b ↔ a ≤ b :=
142
135
by unfold has_le.le rat.le; rw add_sub_add_left_eq_sub
143
136
@@ -176,28 +169,6 @@ lt_iff_lt_of_le_iff_le $
176
169
by simpa [(by cases a; refl : (-a).num = -a.num)]
177
170
using @num_nonneg_iff_zero_le (-a)
178
171
179
- theorem of_int_eq_mk (z : ℤ) : of_int z = z /. 1 := num_denom' _ _ _ _
180
-
181
- theorem coe_int_eq_mk : ∀ z : ℤ, ↑z = z /. 1
182
- | (n : ℕ) := show (n:ℚ) = n /. 1 ,
183
- by induction n with n IH n; simp [*, show (1 :ℚ) = 1 /. 1 , from rfl]
184
- | -[1 + n] := show (-(n + 1 ) : ℚ) = -[1 + n] /. 1 , begin
185
- induction n with n IH, {refl},
186
- show -(n + 1 + 1 : ℚ) = -[1 + n.succ] /. 1 ,
187
- rw [neg_add, IH],
188
- simpa [show -1 = (-1 ) /. 1 , from rfl]
189
- end
190
-
191
- theorem coe_int_eq_of_int (z : ℤ) : ↑z = of_int z :=
192
- (coe_int_eq_mk z).trans (of_int_eq_mk z).symm
193
-
194
- theorem mk_eq_div (n d : ℤ) : n /. d = (n / d : ℚ) :=
195
- begin
196
- by_cases d0 : d = 0 , {simp [d0, div_zero]},
197
- rw [division_def, coe_int_eq_mk, coe_int_eq_mk, inv_def,
198
- mul_def one_ne_zero d0, one_mul, mul_one]
199
- end
200
-
201
172
theorem abs_def (q : ℚ) : abs q = q.num.nat_abs /. q.denom :=
202
173
begin
203
174
have hz : (0 :ℚ) = 0 /. 1 := rfl,
0 commit comments