Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit fbce6e4

Browse files
kim-emmergify[bot]
authored andcommitted
fix(data/set/finite): make fintype_seq an instance (#979)
1 parent 7dea60b commit fbce6e4

File tree

1 file changed

+2
-2
lines changed

1 file changed

+2
-2
lines changed

src/data/set/finite.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -298,14 +298,14 @@ theorem finite_bind {α β} {s : set α} {f : α → set β} :
298298
finite s → (∀ a ∈ s, finite (f a)) → finite (s >>= f)
299299
| ⟨hs⟩ H := ⟨@fintype_bind _ _ (classical.dec_eq β) _ hs _ (λ a ha, (H a ha).fintype)⟩
300300

301-
def fintype_seq {α β : Type u} [decidable_eq β]
301+
instance fintype_seq {α β : Type u} [decidable_eq β]
302302
(f : set (α → β)) (s : set α) [fintype f] [fintype s] :
303303
fintype (f <*> s) :=
304304
by rw seq_eq_bind_map; apply set.fintype_bind'
305305

306306
theorem finite_seq {α β : Type u} {f : set (α → β)} {s : set α} :
307307
finite f → finite s → finite (f <*> s)
308-
| ⟨hf⟩ ⟨hs⟩ := by haveI := classical.dec_eq β; exactI ⟨fintype_seq _ _⟩
308+
| ⟨hf⟩ ⟨hs⟩ := by { haveI := classical.dec_eq β, exactI ⟨set.fintype_seq _ _⟩ }
309309

310310
/-- There are finitely many subsets of a given finite set -/
311311
lemma finite_subsets_of_finite {α : Type u} {a : set α} (h : finite a) : finite {b | b ⊆ a} :=

0 commit comments

Comments
 (0)