Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit fbfdff7

Browse files
committed
chore(data/real/ennreal, topology/instances/ennreal): change name of the order isomorphism for inv (#11959)
On [Zulip](https://leanprover.zulipchat.com/#narrow/stream/113488-general/topic/naming.20defs/near/271228611) it was decided that the name should be changed from `ennreal.inv_order_iso` to `order_iso.inv_ennreal` in order to better accord with the rest of the library.
1 parent ae14f6a commit fbfdff7

File tree

2 files changed

+4
-4
lines changed

2 files changed

+4
-4
lines changed

src/data/real/ennreal.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1059,15 +1059,15 @@ inv_lt_iff_inv_lt.trans $ by rw [inv_one]
10591059

10601060
/-- The inverse map `λ x, x⁻¹` is an order isomorphism between `ℝ≥0∞` and its `order_dual` -/
10611061
@[simps apply]
1062-
def inv_order_iso : ℝ≥0∞ ≃o order_dual ℝ≥0∞ :=
1062+
def _root_.order_iso.inv_ennreal : ℝ≥0∞ ≃o order_dual ℝ≥0∞ :=
10631063
{ to_fun := λ x, x⁻¹,
10641064
inv_fun := λ x, x⁻¹,
10651065
left_inv := @ennreal.inv_inv,
10661066
right_inv := @ennreal.inv_inv,
10671067
map_rel_iff' := λ a b, ennreal.inv_le_inv }
10681068

10691069
@[simp]
1070-
lemma inv_order_iso_symm_apply : inv_order_iso.symm a = a⁻¹ := rfl
1070+
lemma _root_.order_iso.inv_ennreal_symm_apply : order_iso.inv_ennreal.symm a = a⁻¹ := rfl
10711071

10721072
lemma pow_le_pow_of_le_one {n m : ℕ} (ha : a ≤ 1) (h : n ≤ m) : a ^ m ≤ a ^ n :=
10731073
begin

src/topology/instances/ennreal.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -425,11 +425,11 @@ infi_mul_right' h (λ _, ‹nonempty ι›)
425425

426426
lemma inv_map_infi {ι : Sort*} {x : ι → ℝ≥0∞} :
427427
(infi x)⁻¹ = (⨆ i, (x i)⁻¹) :=
428-
inv_order_iso.map_infi x
428+
order_iso.inv_ennreal.map_infi x
429429

430430
lemma inv_map_supr {ι : Sort*} {x : ι → ℝ≥0∞} :
431431
(supr x)⁻¹ = (⨅ i, (x i)⁻¹) :=
432-
inv_order_iso.map_supr x
432+
order_iso.inv_ennreal.map_supr x
433433

434434
lemma inv_limsup {ι : Sort*} {x : ι → ℝ≥0∞} {l : filter ι} :
435435
(l.limsup x)⁻¹ = l.liminf (λ i, (x i)⁻¹) :=

0 commit comments

Comments
 (0)