@@ -8,7 +8,7 @@ Continuous linear functions -- functions between normed vector spaces which are
8
8
import analysis.normed_space.multilinear
9
9
10
10
noncomputable theory
11
- open_locale classical filter big_operators
11
+ open_locale classical big_operators topological_space
12
12
13
13
open filter (tendsto)
14
14
open metric
@@ -104,21 +104,22 @@ lemma comp {g : F → G}
104
104
is_bounded_linear_map 𝕜 (g ∘ f) :=
105
105
(hg.to_continuous_linear_map.comp hf.to_continuous_linear_map).is_bounded_linear_map
106
106
107
- lemma tendsto (x : E) (hf : is_bounded_linear_map 𝕜 f) : f →_{x} (f x) :=
107
+ protected lemma tendsto (x : E) (hf : is_bounded_linear_map 𝕜 f) :
108
+ tendsto f (𝓝 x) (𝓝 (f x)) :=
108
109
let ⟨hf, M, hMp, hM⟩ := hf in
109
110
tendsto_iff_norm_tendsto_zero.2 $
110
111
squeeze_zero (assume e, norm_nonneg _)
111
112
(assume e,
112
113
calc ∥f e - f x∥ = ∥hf.mk' f (e - x)∥ : by rw (hf.mk' _).map_sub e x; refl
113
114
... ≤ M * ∥e - x∥ : hM (e - x))
114
- (suffices (λ (e : E), M * ∥e - x∥) →_{x} ( M * 0 ), by simpa,
115
+ (suffices tendsto (λ (e : E), M * ∥e - x∥) (𝓝 x) (𝓝 ( M * 0 ) ), by simpa,
115
116
tendsto_const_nhds.mul (lim_norm _))
116
117
117
118
lemma continuous (hf : is_bounded_linear_map 𝕜 f) : continuous f :=
118
119
continuous_iff_continuous_at.2 $ λ _, hf.tendsto _
119
120
120
121
lemma lim_zero_bounded_linear_map (hf : is_bounded_linear_map 𝕜 f) :
121
- (f →_{ 0 } 0 ) :=
122
+ tendsto f (𝓝 0 ) (𝓝 0 ) :=
122
123
(hf.1 .mk' _).map_zero ▸ continuous_iff_continuous_at.1 hf.continuous 0
123
124
124
125
section
0 commit comments