Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit fc7e943

Browse files
committed
feat(normed_space/basic): remove localized notation (#4246)
Remove notation for `tendsto` in `nhds`. Also make `is_bounded_linear_map.tendsto` protected.
1 parent 32b5b68 commit fc7e943

File tree

2 files changed

+7
-7
lines changed

2 files changed

+7
-7
lines changed

src/analysis/normed_space/basic.lean

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -17,7 +17,6 @@ variables {α : Type*} {β : Type*} {γ : Type*} {ι : Type*}
1717
noncomputable theory
1818
open filter metric
1919
open_locale topological_space big_operators nnreal
20-
localized "notation f `→_{`:50 a `}`:0 b := filter.tendsto f (_root_.nhds a) (_root_.nhds b)" in filter
2120

2221
/-- Auxiliary class, endowing a type `α` with a function `norm : α → ℝ`. This class is designed to
2322
be extended in more interesting classes specifying the properties of the norm. -/
@@ -388,10 +387,10 @@ lemma squeeze_zero_norm {f : γ → α} {g : γ → ℝ} {t₀ : filter γ}
388387
tendsto f t₀ (𝓝 0) :=
389388
squeeze_zero_norm' (eventually_of_forall h) h'
390389

391-
lemma lim_norm (x : α) : (λg:α, ∥g - x∥) →_{x} 0 :=
390+
lemma lim_norm (x : α) : tendsto (λg : α, ∥g - x∥) (𝓝 x) (𝓝 0) :=
392391
tendsto_iff_norm_tendsto_zero.1 (continuous_iff_continuous_at.1 continuous_id x)
393392

394-
lemma lim_norm_zero : (λg:α, ∥g∥) →_{0} 0 :=
393+
lemma lim_norm_zero : tendsto (λg : α, ∥g∥) (𝓝 0) (𝓝 0) :=
395394
by simpa using lim_norm (0:α)
396395

397396
lemma continuous_norm : continuous (λg:α, ∥g∥) :=

src/analysis/normed_space/bounded_linear_maps.lean

Lines changed: 5 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ Continuous linear functions -- functions between normed vector spaces which are
88
import analysis.normed_space.multilinear
99

1010
noncomputable theory
11-
open_locale classical filter big_operators
11+
open_locale classical big_operators topological_space
1212

1313
open filter (tendsto)
1414
open metric
@@ -104,21 +104,22 @@ lemma comp {g : F → G}
104104
is_bounded_linear_map 𝕜 (g ∘ f) :=
105105
(hg.to_continuous_linear_map.comp hf.to_continuous_linear_map).is_bounded_linear_map
106106

107-
lemma tendsto (x : E) (hf : is_bounded_linear_map 𝕜 f) : f →_{x} (f x) :=
107+
protected lemma tendsto (x : E) (hf : is_bounded_linear_map 𝕜 f) :
108+
tendsto f (𝓝 x) (𝓝 (f x)) :=
108109
let ⟨hf, M, hMp, hM⟩ := hf in
109110
tendsto_iff_norm_tendsto_zero.2 $
110111
squeeze_zero (assume e, norm_nonneg _)
111112
(assume e,
112113
calc ∥f e - f x∥ = ∥hf.mk' f (e - x)∥ : by rw (hf.mk' _).map_sub e x; refl
113114
... ≤ M * ∥e - x∥ : hM (e - x))
114-
(suffices (λ (e : E), M * ∥e - x∥) →_{x} (M * 0), by simpa,
115+
(suffices tendsto (λ (e : E), M * ∥e - x∥) (𝓝 x) (𝓝 (M * 0)), by simpa,
115116
tendsto_const_nhds.mul (lim_norm _))
116117

117118
lemma continuous (hf : is_bounded_linear_map 𝕜 f) : continuous f :=
118119
continuous_iff_continuous_at.2 $ λ _, hf.tendsto _
119120

120121
lemma lim_zero_bounded_linear_map (hf : is_bounded_linear_map 𝕜 f) :
121-
(f →_{0} 0) :=
122+
tendsto f (𝓝 0) (𝓝 0) :=
122123
(hf.1.mk' _).map_zero ▸ continuous_iff_continuous_at.1 hf.continuous 0
123124

124125
section

0 commit comments

Comments
 (0)