Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit fce38f1

Browse files
committed
feat(ring_theory): define fractional_ideal.adjoin_integral (#8296)
This PR shows if `x` is integral over `R`, then `R[x]` is a fractional ideal, and proves some of the essential properties of this fractional ideal. This is an important step towards showing `is_dedekind_domain_inv` implies that the ring is integrally closed. Co-Authored-By: Ashvni ashvni.n@gmail.com Co-Authored-By: Filippo A. E. Nuccio filippo.nuccio@univ-st-etienne.fr
1 parent c05c15f commit fce38f1

File tree

1 file changed

+24
-0
lines changed

1 file changed

+24
-0
lines changed

src/ring_theory/fractional_ideal.lean

Lines changed: 24 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1115,6 +1115,30 @@ begin
11151115
apply is_noetherian_coe_to_fractional_ideal,
11161116
end
11171117

1118+
section adjoin
1119+
1120+
include loc
1121+
omit frac
1122+
1123+
variables {R P} (S) (x : P) (hx : is_integral R x)
1124+
1125+
/-- `A[x]` is a fractional ideal for every integral `x`. -/
1126+
lemma is_fractional_adjoin_integral :
1127+
is_fractional S (algebra.adjoin R ({x} : set P)).to_submodule :=
1128+
is_fractional_of_fg (fg_adjoin_singleton_of_integral x hx)
1129+
1130+
/-- `fractional_ideal.adjoin_integral (S : submonoid R) x hx` is `R[x]` as a fractional ideal,
1131+
where `hx` is a proof that `x : P` is integral over `R`. -/
1132+
@[simps]
1133+
def adjoin_integral : fractional_ideal S P :=
1134+
⟨_, is_fractional_adjoin_integral S x hx⟩
1135+
1136+
lemma mem_adjoin_integral_self :
1137+
x ∈ adjoin_integral S x hx :=
1138+
algebra.subset_adjoin (set.mem_singleton x)
1139+
1140+
end adjoin
1141+
11181142
end fractional_ideal
11191143

11201144
end ring

0 commit comments

Comments
 (0)