@@ -783,7 +783,7 @@ iff.rfl
783
783
theorem eq_sep_of_subset {s t : set α} (h : s ⊆ t) : s = {x ∈ t | x ∈ s} :=
784
784
(inter_eq_self_of_subset_right h).symm
785
785
786
- theorem sep_subset (s : set α) (p : α → Prop ) : {x ∈ s | p x} ⊆ s := λ x, and.left
786
+ @[simp] theorem sep_subset (s : set α) (p : α → Prop ) : {x ∈ s | p x} ⊆ s := λ x, and.left
787
787
788
788
theorem forall_not_of_sep_empty {s : set α} {p : α → Prop } (H : {x ∈ s | p x} = ∅)
789
789
(x) : x ∈ s → ¬ p x := not_and.1 (eq_empty_iff_forall_not_mem.1 H x : _)
@@ -1050,16 +1050,16 @@ sup_sdiff_self_right
1050
1050
@[simp] theorem diff_union_self {s t : set α} : (s \ t) ∪ t = s ∪ t :=
1051
1051
sup_sdiff_self_left
1052
1052
1053
- theorem diff_inter_self {a b : set α} : (b \ a) ∩ a = ∅ :=
1053
+ @[simp] theorem diff_inter_self {a b : set α} : (b \ a) ∩ a = ∅ :=
1054
1054
inf_sdiff_self_left
1055
1055
1056
- theorem diff_inter_self_eq_diff {s t : set α} : s \ (t ∩ s) = s \ t :=
1056
+ @[simp] theorem diff_inter_self_eq_diff {s t : set α} : s \ (t ∩ s) = s \ t :=
1057
1057
sdiff_inf_self_right
1058
1058
1059
- theorem diff_self_inter {s t : set α} : s \ (s ∩ t) = s \ t :=
1059
+ @[simp] theorem diff_self_inter {s t : set α} : s \ (s ∩ t) = s \ t :=
1060
1060
sdiff_inf_self_left
1061
1061
1062
- theorem diff_eq_self {s t : set α} : s \ t = s ↔ t ∩ s ⊆ ∅ :=
1062
+ @[simp] theorem diff_eq_self {s t : set α} : s \ t = s ↔ t ∩ s ⊆ ∅ :=
1063
1063
show s \ t = s ↔ t ⊓ s ≤ ⊥, from sdiff_eq_self_iff_disjoint
1064
1064
1065
1065
@[simp] theorem diff_singleton_eq_self {a : α} {s : set α} (h : a ∉ s) : s \ {a} = s :=
@@ -1963,14 +1963,25 @@ lemma pairwise_on_eq_iff_exists_eq [nonempty β] (s : set α) (f : α → β) :
1963
1963
(pairwise_on s (λ x y, f x = f y)) ↔ ∃ z, ∀ x ∈ s, f x = z :=
1964
1964
pairwise_on_iff_exists_forall s f
1965
1965
1966
- lemma pairwise_on_insert {α} {s : set α} {a : α} {r : α → α → Prop } :
1967
- (insert a s).pairwise_on r ↔ s.pairwise_on r ∧ ∀ b ∈ s, a ≠ b → r a b ∧ r b a :=
1966
+ lemma pairwise_on_union {α} {s t : set α} {r : α → α → Prop } :
1967
+ (s ∪ t).pairwise_on r ↔
1968
+ s.pairwise_on r ∧ t.pairwise_on r ∧ ∀ (a ∈ s) (b ∈ t), a ≠ b → r a b ∧ r b a :=
1968
1969
begin
1969
- simp only [pairwise_on, ball_insert_iff, forall_and_distrib, true_and, forall_false_left ,
1970
- eq_self_iff_true, not_true, ne.def, @eq_comm _ a] ,
1971
- exact ⟨ λ H, ⟨H. 2 . 2 , H. 2 . 1 , H. 1 ⟩, λ H, ⟨ H.2 .2 , H.2 .1 , H.1 ⟩⟩
1970
+ simp only [pairwise_on, mem_union_eq, or_imp_distrib, forall_and_distrib] ,
1971
+ exact ⟨λ H, ⟨H. 1 . 1 , H. 2 . 2 , H. 2 . 1 , λ x hx y hy hne, H. 1 . 2 y hy x hx hne.symm⟩ ,
1972
+ λ H, ⟨⟨H. 1 , λ x hx y hy hne, H.2 .2 . 2 y hy x hx hne.symm⟩ , H.2 .2 . 1 , H. 2 .1 ⟩⟩
1972
1973
end
1973
1974
1975
+ lemma pairwise_on_union_of_symmetric {α} {s t : set α} {r : α → α → Prop } (hr : symmetric r) :
1976
+ (s ∪ t).pairwise_on r ↔
1977
+ s.pairwise_on r ∧ t.pairwise_on r ∧ ∀ (a ∈ s) (b ∈ t), a ≠ b → r a b :=
1978
+ pairwise_on_union.trans $ by simp only [hr.iff, and_self]
1979
+
1980
+ lemma pairwise_on_insert {α} {s : set α} {a : α} {r : α → α → Prop } :
1981
+ (insert a s).pairwise_on r ↔ s.pairwise_on r ∧ ∀ b ∈ s, a ≠ b → r a b ∧ r b a :=
1982
+ by simp only [insert_eq, pairwise_on_union, pairwise_on_singleton, true_and,
1983
+ mem_singleton_iff, forall_eq]
1984
+
1974
1985
lemma pairwise_on_insert_of_symmetric {α} {s : set α} {a : α} {r : α → α → Prop }
1975
1986
(hr : symmetric r) :
1976
1987
(insert a s).pairwise_on r ↔ s.pairwise_on r ∧ ∀ b ∈ s, a ≠ b → r a b :=
0 commit comments