@@ -23,8 +23,6 @@ This file contains these definitions, and basic facts on inclusion, intersection
23
23
intervals (where the precise statements may depend on the properties of the order, in particular
24
24
for some statements it should be `linear_order` or `densely_ordered`).
25
25
26
- This file also contains statements on lower and upper bounds of intervals.
27
-
28
26
TODO: This is just the beginning; a lot of rules are missing
29
27
-/
30
28
@@ -633,61 +631,6 @@ set.ext $ by simp [Ico, Iio, iff_def, lt_min_iff] {contextual:=tt}
633
631
634
632
end decidable_linear_order
635
633
636
- section ordered_add_comm_group
637
-
638
- variables {α : Type u} [ordered_add_comm_group α]
639
-
640
- lemma image_add_left_Icc (a b c : α) : ((+) a) '' Icc b c = Icc (a + b) (a + c) :=
641
- begin
642
- ext x,
643
- split,
644
- { rintros ⟨x, hx, rfl⟩,
645
- exact ⟨add_le_add_left hx.1 a, add_le_add_left hx.2 a⟩},
646
- { intro hx,
647
- refine ⟨-a + x, _, add_neg_cancel_left _ _⟩,
648
- exact ⟨le_neg_add_iff_add_le.2 hx.1 , neg_add_le_iff_le_add.2 hx.2 ⟩ }
649
- end
650
-
651
- lemma image_add_right_Icc (a b c : α) : (λ x, x + c) '' Icc a b = Icc (a + c) (b + c) :=
652
- by convert image_add_left_Icc c a b using 1 ; simp only [add_comm _ c]
653
-
654
- lemma image_neg_Iio (r : α) : image (λz, -z) (Iio r) = Ioi (-r) :=
655
- begin
656
- ext z,
657
- apply iff.intro,
658
- { intros hz,
659
- apply exists.elim hz,
660
- intros z' hz',
661
- rw [←hz'.2 ],
662
- simp only [mem_Ioi, neg_lt_neg_iff],
663
- exact hz'.1 },
664
- { intros hz,
665
- simp only [mem_image, mem_Iio],
666
- use -z,
667
- simp [hz],
668
- exact neg_lt.1 hz }
669
- end
670
-
671
- lemma image_neg_Iic (r : α) : image (λz, -z) (Iic r) = Ici (-r) :=
672
- begin
673
- apply set.ext,
674
- intros z,
675
- apply iff.intro,
676
- { intros hz,
677
- apply exists.elim hz,
678
- intros z' hz',
679
- rw [←hz'.2 ],
680
- simp only [neg_le_neg_iff, mem_Ici],
681
- exact hz'.1 },
682
- { intros hz,
683
- simp only [mem_image, mem_Iic],
684
- use -z,
685
- simp [hz],
686
- exact neg_le.1 hz }
687
- end
688
-
689
- end ordered_add_comm_group
690
-
691
634
section decidable_linear_ordered_add_comm_group
692
635
693
636
variables {α : Type u} [decidable_linear_ordered_add_comm_group α]
703
646
704
647
end decidable_linear_ordered_add_comm_group
705
648
706
- section linear_ordered_field
707
-
708
- variables {α : Type u} [linear_ordered_field α]
709
-
710
- lemma image_mul_right_Icc' (a b : α) {c : α} (h : 0 < c) :
711
- (λ x, x * c) '' Icc a b = Icc (a * c) (b * c) :=
712
- begin
713
- ext x,
714
- split,
715
- { rintros ⟨x, hx, rfl⟩,
716
- exact ⟨mul_le_mul_of_nonneg_right hx.1 (le_of_lt h),
717
- mul_le_mul_of_nonneg_right hx.2 (le_of_lt h)⟩ },
718
- { intro hx,
719
- refine ⟨x / c, _, div_mul_cancel x (ne_of_gt h)⟩,
720
- exact ⟨le_div_of_mul_le h hx.1 , div_le_of_le_mul h (mul_comm b c ▸ hx.2 )⟩ }
721
- end
722
-
723
- lemma image_mul_right_Icc {a b c : α} (hab : a ≤ b) (hc : 0 ≤ c) :
724
- (λ x, x * c) '' Icc a b = Icc (a * c) (b * c) :=
725
- begin
726
- cases eq_or_lt_of_le hc,
727
- { subst c,
728
- simp [(nonempty_Icc.2 hab).image_const] },
729
- exact image_mul_right_Icc' a b ‹0 < c›
730
- end
731
-
732
- lemma image_mul_left_Icc' {a : α} (h : 0 < a) (b c : α) :
733
- ((*) a) '' Icc b c = Icc (a * b) (a * c) :=
734
- by { convert image_mul_right_Icc' b c h using 1 ; simp only [mul_comm _ a] }
735
-
736
- lemma image_mul_left_Icc {a b c : α} (ha : 0 ≤ a) (hbc : b ≤ c) :
737
- ((*) a) '' Icc b c = Icc (a * b) (a * c) :=
738
- by { convert image_mul_right_Icc hbc ha using 1 ; simp only [mul_comm _ a] }
739
-
740
- end linear_ordered_field
741
-
742
649
end set
0 commit comments