Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit fe1c78a

Browse files
committed
feat(data/polynomial/algebra_map): remove some lemmas about aeval, add protected on polynomial.map_list_prod (#13294)
Remove `aeval_sum` which is a duplicate of `map_sum`. Remove `aeval_prod` which is a duplicate of `map_prod`.
1 parent 483b7df commit fe1c78a

File tree

2 files changed

+4
-13
lines changed

2 files changed

+4
-13
lines changed

src/data/polynomial/algebra_map.lean

Lines changed: 0 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -273,15 +273,6 @@ lemma aeval_eq_sum_range' [algebra R S] {p : R[X]} {n : ℕ} (hn : p.nat_degree
273273
aeval x p = ∑ i in finset.range n, p.coeff i • x ^ i :=
274274
by { simp_rw algebra.smul_def, exact eval₂_eq_sum_range' (algebra_map R S) hn x }
275275

276-
lemma aeval_sum {ι : Type*} [algebra R S] (s : finset ι) (f : ι → R[X])
277-
(g : S) : aeval g (∑ i in s, f i) = ∑ i in s, aeval g (f i) :=
278-
(polynomial.aeval g : R[X] →ₐ[_] _).map_sum f s
279-
280-
@[to_additive]
281-
lemma aeval_prod {ι : Type*} [algebra R S] (s : finset ι)
282-
(f : ι → R[X]) (g : S) : aeval g (∏ i in s, f i) = ∏ i in s, aeval g (f i) :=
283-
(polynomial.aeval g : R[X] →ₐ[_] _).map_prod f s
284-
285276
lemma is_root_of_eval₂_map_eq_zero
286277
(hf : function.injective f) {r : R} : eval₂ f (f r) p = 0 → p.is_root r :=
287278
begin

src/data/polynomial/eval.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -237,7 +237,7 @@ zero_dvd_iff.mp (h0 ▸ eval₂_dvd f x h)
237237

238238
lemma eval₂_list_prod (l : list R[X]) (x : S) :
239239
eval₂ f x l.prod = (l.map (eval₂ f x)).prod :=
240-
_root_.map_list_prod (eval₂_ring_hom f x) l
240+
map_list_prod (eval₂_ring_hom f x) l
241241

242242
end eval₂
243243

@@ -624,7 +624,7 @@ ring_hom.ext $ λ x, map_id
624624
(map_ring_hom f).comp (map_ring_hom g) = map_ring_hom (f.comp g) :=
625625
ring_hom.ext $ polynomial.map_map g f
626626

627-
lemma map_list_prod (L : list R[X]) : L.prod.map f = (L.map $ map f).prod :=
627+
protected lemma map_list_prod (L : list R[X]) : L.prod.map f = (L.map $ map f).prod :=
628628
eq.symm $ list.prod_hom _ (map_ring_hom f).to_monoid_hom
629629

630630
@[simp] protected lemma map_pow (n : ℕ) : (p ^ n).map f = p.map f ^ n :=
@@ -766,11 +766,11 @@ lemma root_mul_right_of_is_root {p : R[X]} (q : R[X]) :
766766

767767
lemma eval₂_multiset_prod (s : multiset R[X]) (x : S) :
768768
eval₂ f x s.prod = (s.map (eval₂ f x)).prod :=
769-
_root_.map_multiset_prod (eval₂_ring_hom f x) s
769+
map_multiset_prod (eval₂_ring_hom f x) s
770770

771771
lemma eval₂_finset_prod (s : finset ι) (g : ι → R[X]) (x : S) :
772772
(∏ i in s, g i).eval₂ f x = ∏ i in s, (g i).eval₂ f x :=
773-
_root_.map_prod (eval₂_ring_hom f x) _ _
773+
map_prod (eval₂_ring_hom f x) _ _
774774

775775
/--
776776
Polynomial evaluation commutes with `list.prod`

0 commit comments

Comments
 (0)