Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit feb9aed

Browse files
committed
feat(group_theory/group_action/basic): More API for quotient_action (#13661)
This PR adds a couple more API lemmas for `quotient_action`.
1 parent 46563c5 commit feb9aed

File tree

1 file changed

+12
-4
lines changed

1 file changed

+12
-4
lines changed

src/group_theory/group_action/basic.lean

Lines changed: 12 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -342,11 +342,19 @@ attribute [to_additive add_action.quotient_action] mul_action.quotient_action
342342

343343
variables {β}
344344

345-
@[simp, to_additive] lemma quotient.smul_mk [quotient_action β H] (a : β) (x : α) :
346-
(a • quotient_group.mk x : α ⧸ H) = quotient_group.mk (ax) := rfl
345+
@[simp, to_additive] lemma quotient.smul_mk [quotient_action β H] (b : β) (a : α) :
346+
(b • quotient_group.mk a : α ⧸ H) = quotient_group.mk (ba) := rfl
347347

348-
@[simp, to_additive] lemma quotient.smul_coe [quotient_action β H] (a : β) (x : α) :
349-
(a • x : α ⧸ H) = ↑(a • x) := rfl
348+
@[simp, to_additive] lemma quotient.smul_coe [quotient_action β H] (b : β) (a : α) :
349+
(b • a : α ⧸ H) = ↑(b • a) := rfl
350+
351+
@[simp, to_additive] lemma quotient.mk_smul_out' [quotient_action β H] (b : β) (q : α ⧸ H) :
352+
quotient_group.mk (b • q.out') = b • q :=
353+
by rw [←quotient.smul_mk, quotient_group.out_eq']
354+
355+
@[simp, to_additive] lemma quotient.coe_smul_out' [quotient_action β H] (b : β) (q : α ⧸ H) :
356+
↑(b • q.out') = b • q :=
357+
quotient.mk_smul_out' H b q
350358

351359
end quotient_action
352360

0 commit comments

Comments
 (0)