Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit ffa6e6d

Browse files
committed
feat(set_theory/cardinal): sum_le_sup_lift (#12513)
This is a universe-polymorphic version of `sum_le_sup`.
1 parent 43cb3ff commit ffa6e6d

File tree

1 file changed

+7
-0
lines changed

1 file changed

+7
-0
lines changed

src/set_theory/cardinal.lean

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -622,6 +622,13 @@ sup_le.2 $ le_sum _
622622
theorem sum_le_sup {ι : Type u} (f : ι → cardinal.{u}) : sum f ≤ #ι * sup.{u u} f :=
623623
by rw ← sum_const'; exact sum_le_sum _ _ (le_sup _)
624624

625+
theorem sum_le_sup_lift {ι : Type u} (f : ι → cardinal.{max u v}) :
626+
sum f ≤ (#ι).lift * sup.{u v} f :=
627+
begin
628+
rw [←(sup f).lift_id, ←lift_umax, lift_umax.{(max u v) u}, ←sum_const],
629+
exact sum_le_sum _ _ (le_sup _)
630+
end
631+
625632
theorem sup_eq_zero {ι} {f : ι → cardinal} [is_empty ι] : sup f = 0 :=
626633
by { rw [← nonpos_iff_eq_zero, sup_le], exact is_empty_elim }
627634

0 commit comments

Comments
 (0)