@@ -407,14 +407,16 @@ instance : has_inf (subring R) :=
407
407
@[simp] lemma mem_inf {p p' : subring R} {x : R} : x ∈ p ⊓ p' ↔ x ∈ p ∧ x ∈ p' := iff.rfl
408
408
409
409
instance : has_Inf (subring R) :=
410
- ⟨λ s, subring.mk' (⋂ t ∈ s, ↑t) (⨅ t ∈ s, subring.to_submonoid t ) (⨅ t ∈ s, subring.to_add_subgroup t) (by simp) (by simp)⟩
410
+ ⟨λ s, subring.mk' (⋂ t ∈ s, ↑t) (⨅ t ∈ s, subring.to_submonoid t )
411
+ (⨅ t ∈ s, subring.to_add_subgroup t) (by simp) (by simp)⟩
411
412
412
413
@[simp, norm_cast] lemma coe_Inf (S : set (subring R)) :
413
414
((Inf S : subring R) : set R) = ⋂ s ∈ S, ↑s := rfl
414
415
415
416
lemma mem_Inf {S : set (subring R)} {x : R} : x ∈ Inf S ↔ ∀ p ∈ S, x ∈ p := set.mem_bInter_iff
416
417
417
- @[simp] lemma Inf_to_submonoid (s : set (subring R)) : (Inf s).to_submonoid = ⨅ t ∈ s, subring.to_submonoid t := mk'_to_submonoid _ _
418
+ @[simp] lemma Inf_to_submonoid (s : set (subring R)) :
419
+ (Inf s).to_submonoid = ⨅ t ∈ s, subring.to_submonoid t := mk'_to_submonoid _ _
418
420
419
421
@[simp] lemma Inf_to_add_subgroup (s : set (subring R)) :
420
422
(Inf s).to_add_subgroup = ⨅ t ∈ s, subring.to_add_subgroup t := mk'_to_add_subgroup _ _
@@ -458,8 +460,8 @@ lemma closure_eq_of_le {s : set R} {t : subring R} (h₁ : s ⊆ t) (h₂ : t
458
460
le_antisymm (closure_le.2 h₁) h₂
459
461
460
462
/-- An induction principle for closure membership. If `p` holds for `0`, `1`, and all elements
461
- of `s`, and is preserved under addition, negation, and multiplication, then `p` holds for all elements
462
- of the closure of `s`. -/
463
+ of `s`, and is preserved under addition, negation, and multiplication, then `p` holds for all
464
+ elements of the closure of `s`. -/
463
465
@[elab_as_eliminator]
464
466
lemma closure_induction {s : set R} {p : R → Prop } {x} (h : x ∈ closure s)
465
467
(Hs : ∀ x ∈ s, p x) (H0 : p 0 ) (H1 : p 1 )
@@ -480,10 +482,12 @@ lemma mem_closure_iff {s : set R} {x} :
480
482
( λ p hp, add_subgroup.subset_closure ((submonoid.closure s).mul_mem hp hq) )
481
483
( begin rw zero_mul q, apply add_subgroup.zero_mem _, end )
482
484
( λ p₁ p₂ ihp₁ ihp₂, begin rw add_mul p₁ p₂ q, apply add_subgroup.add_mem _ ihp₁ ihp₂, end )
483
- ( λ x hx, begin have f : -x * q = -(x*q) := by simp, rw f, apply add_subgroup.neg_mem _ hx, end ) )
485
+ ( λ x hx, begin have f : -x * q = -(x*q) :=
486
+ by simp, rw f, apply add_subgroup.neg_mem _ hx, end ) )
484
487
( begin rw mul_zero x, apply add_subgroup.zero_mem _, end )
485
488
( λ q₁ q₂ ihq₁ ihq₂, begin rw mul_add x q₁ q₂, apply add_subgroup.add_mem _ ihq₁ ihq₂ end )
486
- ( λ z hz, begin have f : x * -z = -(x*z) := by simp, rw f, apply add_subgroup.neg_mem _ hz, end ) ),
489
+ ( λ z hz, begin have f : x * -z = -(x*z) := by simp,
490
+ rw f, apply add_subgroup.neg_mem _ hz, end ) ),
487
491
λ h, add_subgroup.closure_induction h
488
492
( λ x hx, submonoid.closure_induction hx
489
493
( λ x hx, subset_closure hx )
@@ -767,7 +771,8 @@ begin
767
771
{ rw [list.map_cons, list.sum_cons],
768
772
exact ha this (ih HL.2 ) },
769
773
replace HL := HL.1 , clear ih tl,
770
- suffices : ∃ L : list R, (∀ x ∈ L, x ∈ s) ∧ (list.prod hd = list.prod L ∨ list.prod hd = -list.prod L),
774
+ suffices : ∃ L : list R, (∀ x ∈ L, x ∈ s) ∧
775
+ (list.prod hd = list.prod L ∨ list.prod hd = -list.prod L),
771
776
{ rcases this with ⟨L, HL', HP | HP⟩,
772
777
{ rw HP, clear HP HL hd, induction L with hd tl ih, { exact h1 },
773
778
rw list.forall_mem_cons at HL',
0 commit comments