@@ -9,7 +9,7 @@ import measure_theory.decomposition.jordan
9
9
# Lebesgue decomposition
10
10
11
11
This file proves the Lebesgue decomposition theorem. The Lebesgue decomposition theorem states that,
12
- given two finite measures `μ` and `ν`, there exists a finite measure `ξ` and a measurable function
12
+ given two σ- finite measures `μ` and `ν`, there exists a finite measure `ξ` and a measurable function
13
13
`f` such that `μ = ξ + fν` and `ξ` is mutually singular with respect to `ν`.
14
14
15
15
The Lebesgue decomposition provides the Radon-Nikodym theorem readily.
@@ -22,13 +22,13 @@ The Lebesgue decomposition provides the Radon-Nikodym theorem readily.
22
22
* `measure_theory.measure.singular_part` : If a pair of measures `have_lebesgue_decomposition`,
23
23
then `singular_part` chooses the measure from `have_lebesgue_decomposition`, otherwise it
24
24
returns the zero measure.
25
- * `` measure_theory.measure.radon_nikodym_deriv` : If a pair of measures
25
+ * `measure_theory.measure.radon_nikodym_deriv` : If a pair of measures
26
26
`have_lebesgue_decomposition`, then `radon_nikodym_deriv` chooses the measurable function from
27
27
`have_lebesgue_decomposition`, otherwise it returns the zero function.
28
28
29
29
## Main results
30
30
31
- * `measure_theory.measure.have_lebesgue_decomposition_of_finite_measure ` :
31
+ * `measure_theory.measure.have_lebesgue_decomposition_of_sigma_finite ` :
32
32
the Lebesgue decomposition theorem.
33
33
* `measure_theory.measure.eq_singular_part` : Given measures `μ` and `ν`, if `s` is a measure
34
34
mutually singular to `ν` and `f` is a measurable function such that `μ = s + fν`, then
@@ -37,10 +37,6 @@ The Lebesgue decomposition provides the Radon-Nikodym theorem readily.
37
37
measure mutually singular to `ν` and `f` is a measurable function such that `μ = s + fν`,
38
38
then `f = radon_nikodym_deriv μ ν`.
39
39
40
- ## To do
41
-
42
- The Lebesgue decomposition theorem can be generalized to σ-finite measures from the finite version.
43
-
44
40
# Tags
45
41
46
42
Lebesgue decomposition theorem
@@ -458,11 +454,13 @@ end lebesgue_decomposition
458
454
459
455
open lebesgue_decomposition
460
456
461
- /-- **The Lebesgue decomposition theorem** : Any pair of finite measures `μ` and `ν`
462
- `have_lebesgue_decomposition`. That is to say, there exists a measure `ξ` and a measurable function
463
- `f`, such that `ξ` is mutually singular with respect to `ν` and `μ = ξ + ν.with_density f` -/
464
- @[priority 100 ] -- see Note [lower instance priority]
465
- instance have_lebesgue_decomposition_of_finite_measure
457
+ /-- Any pair of finite measures `μ` and `ν`, `have_lebesgue_decomposition`. That is to say,
458
+ there exist a measure `ξ` and a measurable function `f`, such that `ξ` is mutually singular
459
+ with respect to `ν` and `μ = ξ + ν.with_density f`.
460
+
461
+ This is not an instance since this is also shown for the more general σ-finite measures with
462
+ `measure_theory.measure.have_lebesgue_decomposition_of_sigma_finite`. -/
463
+ theorem have_lebesgue_decomposition_of_finite_measure
466
464
{μ ν : measure α} [finite_measure μ] [finite_measure ν] :
467
465
have_lebesgue_decomposition μ ν :=
468
466
⟨begin
@@ -574,6 +572,118 @@ instance have_lebesgue_decomposition_of_finite_measure
574
572
add_comm, ennreal.add_sub_cancel_of_le (hle A hA)] },
575
573
end ⟩
576
574
575
+ local attribute [instance] have_lebesgue_decomposition_of_finite_measure
576
+
577
+ instance {μ : measure α} {S : μ.finite_spanning_sets_in {s : set α | measurable_set s}} (n : ℕ) :
578
+ finite_measure (μ.restrict $ S.set n) :=
579
+ ⟨by { rw [restrict_apply measurable_set.univ, set.univ_inter], exact S.finite _ }⟩
580
+
581
+ /-- **The Lebesgue decomposition theorem** : Any pair of σ-finite measures `μ` and `ν`
582
+ `have_lebesgue_decomposition`. That is to say, there exist a measure `ξ` and a measurable function
583
+ `f`, such that `ξ` is mutually singular with respect to `ν` and `μ = ξ + ν.with_density f` -/
584
+ @[priority 100 ] -- see Note [lower instance priority]
585
+ instance have_lebesgue_decomposition_of_sigma_finite
586
+ (μ ν : measure α) [sigma_finite μ] [sigma_finite ν] :
587
+ have_lebesgue_decomposition μ ν :=
588
+ ⟨begin
589
+ -- Since `μ` and `ν` are both σ-finite, there exists a sequence of pairwise disjoint spanning
590
+ -- sets which are finite with respect to both `μ` and `ν`
591
+ obtain ⟨S, T, h₁, h₂⟩ := exists_eq_disjoint_finite_spanning_sets_in μ ν,
592
+ have h₃ : pairwise (disjoint on T.set) := h₁ ▸ h₂,
593
+ -- We define `μn` and `νn` as sequences of measures such that `μn n = μ ∩ S n` and
594
+ -- `νn n = ν ∩ S n` where `S` is the aforementioned finite spanning set sequence.
595
+ -- Since `S` is spanning, it is clear that `sum μn = μ` and `sum νn = ν`
596
+ set μn : ℕ → measure α := λ n, μ.restrict (S.set n) with hμn,
597
+ have hμ : μ = sum μn,
598
+ { rw [hμn, ← restrict_Union h₂ S.set_mem, S.spanning, restrict_univ] },
599
+ set νn : ℕ → measure α := λ n, ν.restrict (T.set n) with hνn,
600
+ have hν : ν = sum νn,
601
+ { rw [hνn, ← restrict_Union h₃ T.set_mem, T.spanning, restrict_univ] },
602
+ -- As `S` is finite with respect to both `μ` and `ν`, it is clear that `μn n` and `νn n` are
603
+ -- finite measures for all `n : ℕ`. Thus, we may apply the finite Lebesgue decomposition theorem
604
+ -- to `μn n` and `νn n`. We define `ξ` as the sum of the singular part of the Lebesgue
605
+ -- decompositions of `μn n` and `νn n`, and `f` as the sum of the Radon-Nikodym derviatives of
606
+ -- `μn n` and `νn n` restricted on `S n`
607
+ set ξ := sum (λ n, singular_part (μn n) (νn n)) with hξ,
608
+ set f := ∑' n, (S.set n).indicator (radon_nikodym_deriv (μn n) (νn n)) with hf,
609
+ -- I claim `ξ` and `f` form a Lebesgue decomposition of `μ` and `ν`
610
+ refine ⟨⟨ξ, f⟩, _, _, _⟩,
611
+ { exact measurable.ennreal_tsum' (λ n, measurable.indicator
612
+ (measurable_radon_nikodym_deriv (μn n) (νn n)) (S.set_mem n)) },
613
+ -- We show that `ξ` is mutually singular with respect to `ν`
614
+ { choose A hA₁ hA₂ hA₃ using λ n, mutually_singular_singular_part (μn n) (νn n),
615
+ simp only [hξ],
616
+ -- We use the set `B := ⋃ j, (S.set j) ∩ A j` where `A n` is the set provided as
617
+ -- `singular_part (μn n) (νn n) ⊥ₘ νn n`
618
+ refine ⟨⋃ j, (S.set j) ∩ A j,
619
+ measurable_set.Union (λ n, (S.set_mem n).inter (hA₁ n)), _, _⟩,
620
+ -- `ξ B = 0` since `ξ B = ∑ i j, singular_part (μn j) (νn j) (S.set i ∩ A i)`
621
+ -- `= ∑ i, singular_part (μn i) (νn i) (S.set i ∩ A i)`
622
+ -- `≤ ∑ i, singular_part (μn i) (νn i) (A i) = 0`
623
+ -- where the second equality follows as `singular_part (μn j) (νn j) (S.set i ∩ A i)` vanishes
624
+ -- for all `i ≠ j`
625
+ { rw [measure_Union],
626
+ { have : ∀ i, (sum (λ n, (μn n).singular_part (νn n))) (S.set i ∩ A i) =
627
+ (μn i).singular_part (νn i) (S.set i ∩ A i),
628
+ { intro i, rw [sum_apply _ ((S.set_mem i).inter (hA₁ i)), tsum_eq_single i],
629
+ { intros j hij,
630
+ rw [hμn, ← nonpos_iff_eq_zero],
631
+ refine le_trans ((singular_part_le _ _) _ ((S.set_mem i).inter (hA₁ i))) (le_of_eq _),
632
+ rw [restrict_apply ((S.set_mem i).inter (hA₁ i)), set.inter_comm, ← set.inter_assoc],
633
+ have : disjoint (S.set j) (S.set i) := h₂ j i hij,
634
+ rw set.disjoint_iff_inter_eq_empty at this ,
635
+ rw [this , set.empty_inter, measure_empty] },
636
+ { apply_instance } },
637
+ simp_rw [this , tsum_eq_zero_iff ennreal.summable],
638
+ intro n, exact measure_mono_null (set.inter_subset_right _ _) (hA₂ n) },
639
+ { exact h₂.mono (λ i j, disjoint.mono inf_le_left inf_le_left) },
640
+ { exact λ n, (S.set_mem n).inter (hA₁ n) } },
641
+ -- We will now show `ν Bᶜ = 0`. This follows since `Bᶜ = ⋃ n, S.set n ∩ (A n)ᶜ` and thus,
642
+ -- `ν Bᶜ = ∑ i, ν (S.set i ∩ (A i)ᶜ) = ∑ i, (νn i) (A i)ᶜ = 0`
643
+ { have hcompl : is_compl (⋃ n, (S.set n ∩ A n)) (⋃ n, S.set n ∩ (A n)ᶜ),
644
+ { split,
645
+ { rintro x ⟨hx₁, hx₂⟩, rw set.mem_Union at hx₁ hx₂,
646
+ obtain ⟨⟨i, hi₁, hi₂⟩, ⟨j, hj₁, hj₂⟩⟩ := ⟨hx₁, hx₂⟩,
647
+ have : i = j,
648
+ { by_contra hij, exact h₂ i j hij ⟨hi₁, hj₁⟩ },
649
+ exact hj₂ (this ▸ hi₂) },
650
+ { intros x hx,
651
+ simp only [set.mem_Union, set.sup_eq_union, set.mem_inter_eq,
652
+ set.mem_union_eq, set.mem_compl_eq, or_iff_not_imp_left],
653
+ intro h, push_neg at h,
654
+ rw [set.top_eq_univ, ← S.spanning, set.mem_Union] at hx,
655
+ obtain ⟨i, hi⟩ := hx,
656
+ exact ⟨i, hi, h i hi⟩ } },
657
+ rw [hcompl.compl_eq, measure_Union, tsum_eq_zero_iff ennreal.summable],
658
+ { intro n, rw [set.inter_comm, ← restrict_apply (hA₁ n).compl, ← hA₃ n, hνn, h₁] },
659
+ { exact h₂.mono (λ i j, disjoint.mono inf_le_left inf_le_left) },
660
+ { exact λ n, (S.set_mem n).inter (hA₁ n).compl } } },
661
+ -- Finally, it remains to show `μ = ξ + ν.with_density f`. Since `μ = sum μn`, and
662
+ -- `ξ + ν.with_density f = ∑ n, singular_part (μn n) (νn n)`
663
+ -- `+ ν.with_density (radon_nikodym_deriv (μn n) (νn n)) ∩ (S.set n)`,
664
+ -- it suffices to show that the individual summands are equal. This follows by the
665
+ -- Lebesgue decomposition properties on the individual `μn n` and `νn n`
666
+ { simp only [hξ, hf, hμ],
667
+ rw [with_density_tsum _, sum_add_sum],
668
+ { refine sum_congr (λ n, _),
669
+ conv_lhs { rw have_lebesgue_decomposition_add (μn n) (νn n) },
670
+ suffices heq : (νn n).with_density ((μn n).radon_nikodym_deriv (νn n)) =
671
+ ν.with_density ((S.set n).indicator ((μn n).radon_nikodym_deriv (νn n))),
672
+ { rw heq },
673
+ rw [hν, with_density_indicator (S.set_mem n), restrict_sum _ (S.set_mem n)],
674
+ suffices hsumeq : sum (λ (i : ℕ), (νn i).restrict (S.set n)) = νn n,
675
+ { rw hsumeq },
676
+ ext1 s hs,
677
+ rw [sum_apply _ hs, tsum_eq_single n, hνn, h₁,
678
+ restrict_restrict (T.set_mem n), set.inter_self],
679
+ { intros m hm,
680
+ rw [hνn, h₁, restrict_restrict (T.set_mem n), set.inter_comm,
681
+ set.disjoint_iff_inter_eq_empty.1 (h₃ m n hm), restrict_empty,
682
+ coe_zero, pi.zero_apply] },
683
+ { apply_instance } },
684
+ { exact λ n, measurable.indicator (measurable_radon_nikodym_deriv _ _) (S.set_mem n) } },
685
+ end ⟩
686
+
577
687
end measure
578
688
579
689
end measure_theory
0 commit comments