Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit 402e71e

Browse files
ChrisHughes24digama0
authored andcommitted
feat(order/filter): tendsto_at_top_at_top (#540)
1 parent f64b9aa commit 402e71e

File tree

1 file changed

+10
-0
lines changed

1 file changed

+10
-0
lines changed

order/filter.lean

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -1759,6 +1759,16 @@ lemma tendsto_at_top {α β} [preorder β] (m : α → β) (f : filter α) :
17591759
tendsto m f at_top ↔ (∀b, {a | b ≤ m a} ∈ f.sets) :=
17601760
by simp only [at_top, tendsto_infi, tendsto_principal]; refl
17611761

1762+
lemma tendsto_at_top_at_top {α β} [preorder α] [preorder β]
1763+
[hα : nonempty α] (h : directed (@has_le.le α _) id)
1764+
(f : α → β) :
1765+
tendsto f at_top at_top ↔ ∀ b : β, ∃ i : α, ∀ a : α, i ≤ a → b ≤ f a :=
1766+
have directed ge (λ (a : α), principal {b : α | a ≤ b}),
1767+
from λ a b, let ⟨z, hz⟩ := h b a in
1768+
⟨z, λ s h x hzx, h (le_trans hz.2 hzx),
1769+
λ s h x hzx, h (le_trans hz.1 hzx)⟩,
1770+
by rw [tendsto_at_top, at_top, infi_sets_eq this hα]; simp
1771+
17621772
lemma tendsto_finset_image_at_top_at_top {i : β → γ} {j : γ → β} (h : ∀x, j (i x) = x) :
17631773
tendsto (λs:finset γ, s.image j) at_top at_top :=
17641774
tendsto_infi.2 $ assume s, tendsto_infi' (s.image i) $ tendsto_principal_principal.2 $

0 commit comments

Comments
 (0)