|
| 1 | +/- |
| 2 | +Copyright (c) 2021 Riccardo Brasca. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Riccardo Brasca |
| 5 | +-/ |
| 6 | + |
| 7 | +import ring_theory.polynomial.cyclotomic |
| 8 | + |
| 9 | +/-! |
| 10 | +# Not all coefficients of cyclotomic polynomials are -1, 0, or 1 |
| 11 | +
|
| 12 | +We show that not all coefficients of cyclotomic polynomials are equal to `0`, `-1` or `1`, in the |
| 13 | +theorem `not_forall_coeff_cyclotomic_neg_one_zero_one`. We prove this with the counterexample |
| 14 | +`coeff_cyclotomic_105 : coeff (cyclotomic 105 ℤ) 7 = -2`. |
| 15 | +-/ |
| 16 | + |
| 17 | +section computation |
| 18 | + |
| 19 | +lemma prime_3 : nat.prime 3 := by norm_num |
| 20 | + |
| 21 | +lemma prime_5 : nat.prime 5 := by norm_num |
| 22 | + |
| 23 | +lemma prime_7 : nat.prime 7 := by norm_num |
| 24 | + |
| 25 | +lemma proper_divisors_15 : nat.proper_divisors 15 = {1, 3, 5} := rfl |
| 26 | + |
| 27 | +lemma proper_divisors_21 : nat.proper_divisors 21 = {1, 3, 7} := rfl |
| 28 | + |
| 29 | +lemma proper_divisors_35 : nat.proper_divisors 35 = {1, 5, 7} := rfl |
| 30 | + |
| 31 | +lemma proper_divisors_105 : nat.proper_divisors 105 = {1, 3, 5, 7, 15, 21, 35} := rfl |
| 32 | + |
| 33 | +end computation |
| 34 | + |
| 35 | +open polynomial |
| 36 | + |
| 37 | +lemma cyclotomic_3 : cyclotomic 3 ℤ = 1 + X + X ^ 2 := |
| 38 | +begin |
| 39 | + refine ((eq_cyclotomic_iff (show 0 < 3, by norm_num) _).2 _).symm, |
| 40 | + rw nat.prime.proper_divisors prime_3, |
| 41 | + simp only [finset.prod_singleton, cyclotomic_one], |
| 42 | + ring |
| 43 | +end |
| 44 | + |
| 45 | +lemma cyclotomic_5 : cyclotomic 5 ℤ = 1 + X + X ^ 2 + X ^ 3 + X ^ 4 := |
| 46 | +begin |
| 47 | + refine ((eq_cyclotomic_iff (nat.prime.pos prime_5) _).2 _).symm, |
| 48 | + rw nat.prime.proper_divisors prime_5, |
| 49 | + simp only [finset.prod_singleton, cyclotomic_one], |
| 50 | + ring |
| 51 | +end |
| 52 | + |
| 53 | +lemma cyclotomic_7 : cyclotomic 7 ℤ = 1 + X + X ^ 2 + X ^ 3 + X ^ 4 + X ^ 5 + X ^ 6 := |
| 54 | +begin |
| 55 | + refine ((eq_cyclotomic_iff (nat.prime.pos prime_7) _).2 _).symm, |
| 56 | + rw nat.prime.proper_divisors prime_7, |
| 57 | + simp only [finset.prod_singleton, cyclotomic_one], |
| 58 | + ring |
| 59 | +end |
| 60 | + |
| 61 | +lemma cyclotomic_15 : cyclotomic 15 ℤ = 1 - X + X ^ 3 - X ^ 4 + X ^ 5 - X ^ 7 + X ^ 8 := |
| 62 | +begin |
| 63 | + refine ((eq_cyclotomic_iff (show 0 < 15, by norm_num) _).2 _).symm, |
| 64 | + rw [proper_divisors_15, finset.prod_insert _, finset.prod_insert _, finset.prod_singleton, |
| 65 | + cyclotomic_one, cyclotomic_3, cyclotomic_5], |
| 66 | + ring, |
| 67 | + repeat { norm_num } |
| 68 | +end |
| 69 | + |
| 70 | +lemma cyclotomic_21 : cyclotomic 21 ℤ = |
| 71 | + 1 - X + X ^ 3 - X ^ 4 + X ^ 6 - X ^ 8 + X ^ 9 - X ^ 11 + X ^ 12 := |
| 72 | +begin |
| 73 | + refine ((eq_cyclotomic_iff (show 0 < 21, by norm_num) _).2 _).symm, |
| 74 | + rw [proper_divisors_21, finset.prod_insert _, finset.prod_insert _, finset.prod_singleton, |
| 75 | + cyclotomic_one, cyclotomic_3, cyclotomic_7], |
| 76 | + ring, |
| 77 | + repeat { norm_num } |
| 78 | +end |
| 79 | + |
| 80 | +lemma cyclotomic_35 : cyclotomic 35 ℤ = |
| 81 | + 1 - X + X ^ 5 - X ^ 6 + X ^ 7 - X ^ 8 + X ^ 10 - X ^ 11 + X ^ 12 - X ^ 13 + X ^ 14 - X ^ 16 + |
| 82 | + X ^ 17 - X ^ 18 + X ^ 19 - X ^ 23 + X ^ 24 := |
| 83 | +begin |
| 84 | + refine ((eq_cyclotomic_iff (show 0 < 35, by norm_num) _).2 _).symm, |
| 85 | + rw [proper_divisors_35, finset.prod_insert _, finset.prod_insert _, finset.prod_singleton, |
| 86 | + cyclotomic_one, cyclotomic_5, cyclotomic_7], |
| 87 | + ring, |
| 88 | + repeat { norm_num } |
| 89 | +end |
| 90 | + |
| 91 | +lemma cyclotomic_105 : cyclotomic 105 ℤ = |
| 92 | + 1 + X + X ^ 2 - X ^ 5 - X ^ 6 - 2 * X ^ 7 - X ^ 8 - X ^ 9 + X ^ 12 + X ^ 13 + X ^ 14 + X ^ 15 |
| 93 | + + X ^ 16 + X ^ 17 - X ^ 20 - X ^ 22 - X ^ 24 - X ^ 26 - X ^ 28 + X ^ 31 + X ^ 32 + X ^ 33 + |
| 94 | + X ^ 34 + X ^ 35 + X ^ 36 - X ^ 39 - X ^ 40 - 2 * X ^ 41 - X ^ 42 - X ^ 43 + X ^ 46 + X ^ 47 + |
| 95 | + X ^ 48 := |
| 96 | +begin |
| 97 | + refine ((eq_cyclotomic_iff (show 0 < 105, by norm_num) _).2 _).symm, |
| 98 | + rw proper_divisors_105, |
| 99 | + repeat {rw finset.prod_insert _}, |
| 100 | + rw [finset.prod_singleton, cyclotomic_one, cyclotomic_3, cyclotomic_5, cyclotomic_7, |
| 101 | + cyclotomic_15, cyclotomic_21, cyclotomic_35], |
| 102 | + ring, |
| 103 | + repeat { norm_num } |
| 104 | +end |
| 105 | + |
| 106 | +lemma coeff_cyclotomic_105 : coeff (cyclotomic 105 ℤ) 7 = -2 := |
| 107 | +begin |
| 108 | + simp [cyclotomic_105, coeff_X_pow, coeff_one, coeff_X_of_ne_one, coeff_bit0_mul, coeff_bit1_mul] |
| 109 | +end |
| 110 | + |
| 111 | +lemma not_forall_coeff_cyclotomic_neg_one_zero_one : |
| 112 | + ¬∀ n i, coeff (cyclotomic n ℤ) i ∈ ({-1, 0, 1} : set ℤ) := |
| 113 | +begin |
| 114 | + intro h, |
| 115 | + replace h := h 105 7, |
| 116 | + rw coeff_cyclotomic_105 at h, |
| 117 | + norm_num at h |
| 118 | +end |
0 commit comments