@@ -36,13 +36,13 @@ classical.choice h
36
36
noncomputable def finite.to_finset {s : set α} (h : finite s) : finset α :=
37
37
@set.to_finset _ _ h.fintype
38
38
39
- @[simp] theorem finite.mem_to_finset {s : set α} { h : finite s} {a : α} : a ∈ h.to_finset ↔ a ∈ s :=
39
+ @[simp] theorem finite.mem_to_finset {s : set α} ( h : finite s) {a : α} : a ∈ h.to_finset ↔ a ∈ s :=
40
40
@mem_to_finset _ _ h.fintype _
41
41
42
42
@[simp] theorem finite.to_finset.nonempty {s : set α} (h : finite s) :
43
43
h.to_finset.nonempty ↔ s.nonempty :=
44
44
show (∃ x, x ∈ h.to_finset) ↔ (∃ x, x ∈ s),
45
- from exists_congr (λ _, finite .mem_to_finset)
45
+ from exists_congr (λ _, h .mem_to_finset)
46
46
47
47
@[simp] lemma finite.coe_to_finset {α} {s : set α} (h : finite s) : ↑h.to_finset = s :=
48
48
@set.coe_to_finset _ s h.fintype
@@ -433,12 +433,12 @@ end
433
433
lemma exists_min_image [linear_order β] (s : set α) (f : α → β) (h1 : finite s) :
434
434
s.nonempty → ∃ a ∈ s, ∀ b ∈ s, f a ≤ f b
435
435
| ⟨x, hx⟩ := by simpa only [exists_prop, finite.mem_to_finset]
436
- using (finite .to_finset h1) .exists_min_image f ⟨x, finite .mem_to_finset.2 hx⟩
436
+ using h1 .to_finset.exists_min_image f ⟨x, h1 .mem_to_finset.2 hx⟩
437
437
438
438
lemma exists_max_image [linear_order β] (s : set α) (f : α → β) (h1 : finite s) :
439
439
s.nonempty → ∃ a ∈ s, ∀ b ∈ s, f b ≤ f a
440
440
| ⟨x, hx⟩ := by simpa only [exists_prop, finite.mem_to_finset]
441
- using (finite .to_finset h1) .exists_max_image f ⟨x, finite .mem_to_finset.2 hx⟩
441
+ using h1 .to_finset.exists_max_image f ⟨x, h1 .mem_to_finset.2 hx⟩
442
442
443
443
end set
444
444
0 commit comments