Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit c087011

Browse files
committed
refactor(data/set/finite): make finite argument of set.finite.mem_to_finset explicit (#6508)
This way we can use dot notation.
1 parent 9f0f05e commit c087011

File tree

7 files changed

+11
-11
lines changed

7 files changed

+11
-11
lines changed

src/data/finset/preimage.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -28,7 +28,7 @@ noncomputable def preimage (s : finset β) (f : α → β)
2828

2929
@[simp] lemma mem_preimage {f : α → β} {s : finset β} {hf : set.inj_on f (f ⁻¹' ↑s)} {x : α} :
3030
x ∈ preimage s f hf ↔ f x ∈ s :=
31-
set.finite.mem_to_finset
31+
set.finite.mem_to_finset _
3232

3333
@[simp, norm_cast] lemma coe_preimage {f : α → β} (s : finset β)
3434
(hf : set.inj_on f (f ⁻¹' ↑s)) : (↑(preimage s f hf) : set α) = f ⁻¹' ↑s :=

src/data/set/finite.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -36,13 +36,13 @@ classical.choice h
3636
noncomputable def finite.to_finset {s : set α} (h : finite s) : finset α :=
3737
@set.to_finset _ _ h.fintype
3838

39-
@[simp] theorem finite.mem_to_finset {s : set α} {h : finite s} {a : α} : a ∈ h.to_finset ↔ a ∈ s :=
39+
@[simp] theorem finite.mem_to_finset {s : set α} (h : finite s) {a : α} : a ∈ h.to_finset ↔ a ∈ s :=
4040
@mem_to_finset _ _ h.fintype _
4141

4242
@[simp] theorem finite.to_finset.nonempty {s : set α} (h : finite s) :
4343
h.to_finset.nonempty ↔ s.nonempty :=
4444
show (∃ x, x ∈ h.to_finset) ↔ (∃ x, x ∈ s),
45-
from exists_congr (λ _, finite.mem_to_finset)
45+
from exists_congr (λ _, h.mem_to_finset)
4646

4747
@[simp] lemma finite.coe_to_finset {α} {s : set α} (h : finite s) : ↑h.to_finset = s :=
4848
@set.coe_to_finset _ s h.fintype
@@ -433,12 +433,12 @@ end
433433
lemma exists_min_image [linear_order β] (s : set α) (f : α → β) (h1 : finite s) :
434434
s.nonempty → ∃ a ∈ s, ∀ b ∈ s, f a ≤ f b
435435
| ⟨x, hx⟩ := by simpa only [exists_prop, finite.mem_to_finset]
436-
using (finite.to_finset h1).exists_min_image f ⟨x, finite.mem_to_finset.2 hx⟩
436+
using h1.to_finset.exists_min_image f ⟨x, h1.mem_to_finset.2 hx⟩
437437

438438
lemma exists_max_image [linear_order β] (s : set α) (f : α → β) (h1 : finite s) :
439439
s.nonempty → ∃ a ∈ s, ∀ b ∈ s, f b ≤ f a
440440
| ⟨x, hx⟩ := by simpa only [exists_prop, finite.mem_to_finset]
441-
using (finite.to_finset h1).exists_max_image f ⟨x, finite.mem_to_finset.2 hx⟩
441+
using h1.to_finset.exists_max_image f ⟨x, h1.mem_to_finset.2 hx⟩
442442

443443
end set
444444

src/linear_algebra/linear_independent.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -313,7 +313,7 @@ begin
313313
rcases finite_subset_Union ft ht with ⟨I, fi, hI⟩,
314314
rcases hs.finset_le fi.to_finset with ⟨i, hi⟩,
315315
exact (h i).mono (subset.trans hI $ bUnion_subset $
316-
λ j hj, hi j (finite.mem_to_finset.2 hj)) },
316+
λ j hj, hi j (fi.mem_to_finset.2 hj)) },
317317
{ refine (linear_independent_empty _ _).mono _,
318318
rintro _ ⟨_, ⟨i, _⟩, _⟩, exact hη ⟨i⟩ }
319319
end

src/measure_theory/integration.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -72,7 +72,7 @@ f.measurable_set_fiber' x
7272
protected def range (f : α →ₛ β) : finset β := f.finite_range.to_finset
7373

7474
@[simp] theorem mem_range {f : α →ₛ β} {b} : b ∈ f.range ↔ b ∈ range f :=
75-
finite.mem_to_finset
75+
finite.mem_to_finset _
7676

7777
theorem mem_range_self (f : α →ₛ β) (x : α) : f x ∈ f.range := mem_range.2 ⟨x, rfl⟩
7878

src/order/compactly_generated.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -328,7 +328,7 @@ begin
328328
obtain ⟨I, fi, hI⟩ := set.finite_subset_Union t.finite_to_set ht,
329329
obtain ⟨i, hi⟩ := hs.finset_le fi.to_finset,
330330
exact (h i).mono (set.subset.trans hI $ set.bUnion_subset $
331-
λ j hj, hi j (set.finite.mem_to_finset.2 hj)) },
331+
λ j hj, hi j (fi.mem_to_finset.2 hj)) },
332332
{ rintros a ⟨_, ⟨i, _⟩, _⟩,
333333
exfalso, exact hη ⟨i⟩, },
334334
end

src/order/filter/cofinite.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ begin
7878
use (hs.to_finset.sup id) + 1,
7979
assume b hb,
8080
by_contradiction hbs,
81-
have := hs.to_finset.subset_range_sup_succ (finite.mem_to_finset.2 hbs),
81+
have := hs.to_finset.subset_range_sup_succ (hs.mem_to_finset.2 hbs),
8282
exact not_lt_of_le hb (finset.mem_range.1 this) },
8383
{ rintros ⟨N, hN⟩,
8484
apply (finite_lt_nat N).subset,

src/order/order_iso_nat.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -110,8 +110,8 @@ begin
110110
obtain ⟨m, hm⟩ : ∃ m, ∀ n, m ≤ n → ¬ n ∈ bad,
111111
{ by_cases he : hbad.to_finset.nonempty,
112112
{ refine ⟨(hbad.to_finset.max' he).succ, λ n hn nbad, nat.not_succ_le_self _
113-
(hn.trans (hbad.to_finset.le_max' n (set.finite.mem_to_finset.2 nbad)))⟩ },
114-
{ exact ⟨0, λ n hn nbad, he ⟨n, set.finite.mem_to_finset.2 nbad⟩⟩ } },
113+
(hn.trans (hbad.to_finset.le_max' n (hbad.mem_to_finset.2 nbad)))⟩ },
114+
{ exact ⟨0, λ n hn nbad, he ⟨n, hbad.mem_to_finset.2 nbad⟩⟩ } },
115115
have h : ∀ (n : ℕ), ∃ (n' : ℕ), n < n' ∧ r (f (n + m)) (f (n' + m)),
116116
{ intro n,
117117
have h := hm _ (le_add_of_nonneg_left n.zero_le),

0 commit comments

Comments
 (0)