@@ -1513,35 +1513,8 @@ quotient.induction_on₂ s t $ λ l₁ l₂,
15131513show ↑(l₁.diff l₂) = foldl erase erase_comm ↑l₁ ↑l₂,
15141514by { rw diff_eq_foldl l₁ l₂, symmetry, exact foldl_hom _ _ _ _ _ (λ x y, rfl) }
15151515
1516- theorem add_sub_of_le (h : s ≤ t) : s + (t - s) = t :=
1517- add_sub_cancel_of_le h
1518-
1519- theorem sub_add' : s - (t + u) = s - t - u :=
1520- sub_add_eq_sub_sub'
1521-
1522- theorem sub_add_cancel (h : t ≤ s) : s - t + t = s :=
1523- sub_add_cancel_of_le h
1524-
1525- @[simp] theorem add_sub_cancel_left (s : multiset α) : ∀ t, s + t - s = t :=
1526- add_sub_cancel_left s
1527-
1528- @[simp] theorem add_sub_cancel (s t : multiset α) : s + t - t = s :=
1529- add_sub_cancel_right s t
1530-
1531- theorem sub_le_sub_right (h : s ≤ t) (u) : s - u ≤ t - u :=
1532- sub_le_sub_right' h u
1533-
1534- theorem sub_le_sub_left (h : s ≤ t) : ∀ u, u - t ≤ u - s :=
1535- sub_le_sub_left' h
1536-
1537- theorem le_sub_add (s t : multiset α) : s ≤ s - t + t :=
1538- le_sub_add -- implicit args
1539-
1540- theorem sub_le_self (s t : multiset α) : s - t ≤ s :=
1541- sub_le_self' -- implicit args
1542-
15431516@[simp] theorem card_sub {s t : multiset α} (h : t ≤ s) : card (s - t) = card s - card t :=
1544- (nat.sub_eq_of_eq_add $ by rw [add_comm, ← card_add, sub_add_cancel h]).symm
1517+ (nat.sub_eq_of_eq_add $ by rw [add_comm, ← card_add, sub_add_cancel_of_le h]).symm
15451518
15461519/-! ### Union -/
15471520
@@ -1554,20 +1527,20 @@ instance : has_union (multiset α) := ⟨union⟩
15541527
15551528theorem union_def (s t : multiset α) : s ∪ t = s - t + t := rfl
15561529
1557- theorem le_union_left (s t : multiset α) : s ≤ s ∪ t := le_sub_add _ _
1530+ theorem le_union_left (s t : multiset α) : s ≤ s ∪ t := le_sub_add
15581531
15591532theorem le_union_right (s t : multiset α) : t ≤ s ∪ t := le_add_left _ _
15601533
1561- theorem eq_union_left : t ≤ s → s ∪ t = s := sub_add_cancel
1534+ theorem eq_union_left : t ≤ s → s ∪ t = s := sub_add_cancel_of_le
15621535
15631536theorem union_le_union_right (h : s ≤ t) (u) : s ∪ u ≤ t ∪ u :=
1564- add_le_add_right (sub_le_sub_right h _) u
1537+ add_le_add_right (sub_le_sub_right' h _) u
15651538
15661539theorem union_le (h₁ : s ≤ u) (h₂ : t ≤ u) : s ∪ t ≤ u :=
15671540by rw ← eq_union_left h₂; exact union_le_union_right h₁ t
15681541
15691542@[simp] theorem mem_union : a ∈ s ∪ t ↔ a ∈ s ∨ a ∈ t :=
1570- ⟨λ h, (mem_add.1 h).imp_left (mem_of_le $ sub_le_self _ _ ),
1543+ ⟨λ h, (mem_add.1 h).imp_left (mem_of_le sub_le_self' ),
15711544 or.rec (mem_of_le $ le_union_left _ _) (mem_of_le $ le_union_right _ _)⟩
15721545
15731546@[simp] theorem map_union [decidable_eq β] {f : α → β} (finj : function.injective f)
@@ -1662,7 +1635,7 @@ union_le (le_add_right _ _) (le_add_left _ _)
16621635
16631636theorem union_add_distrib (s t u : multiset α) : (s ∪ t) + u = (s + u) ∪ (t + u) :=
16641637by simpa [(∪), union, eq_comm, add_assoc] using show s + u - (t + u) = s - t,
1665- by rw [add_comm t, sub_add ', add_sub_cancel ]
1638+ by rw [add_comm t, sub_add_eq_sub_sub ', add_sub_cancel_right ]
16661639
16671640theorem add_union_distrib (s t u : multiset α) : s + (t ∪ u) = (s + t) ∪ (s + u) :=
16681641by rw [add_comm, union_add_distrib, add_comm s, add_comm s]
@@ -1709,8 +1682,7 @@ begin
17091682end
17101683
17111684theorem sub_inter (s t : multiset α) : s - (s ∩ t) = s - t :=
1712- add_right_cancel $
1713- by rw [sub_add_inter s t, sub_add_cancel (inter_le_left _ _)]
1685+ add_right_cancel $ by rw [sub_add_inter s t, sub_add_cancel_of_le (inter_le_left s t)]
17141686
17151687end
17161688
0 commit comments