@@ -119,38 +119,38 @@ lemma is_directed_mono [is_directed α r] (h : ∀ ⦃a b⦄, r a b → s a b) :
119
119
lemma exists_ge_ge [has_le α] [is_directed α (≤)] (a b : α) : ∃ c, a ≤ c ∧ b ≤ c :=
120
120
directed_of (≤) a b
121
121
122
- lemma exists_le_le [has_le α] [is_directed α (swap (≤) )] (a b : α) : ∃ c, c ≤ a ∧ c ≤ b :=
123
- directed_of (swap (≤) ) a b
122
+ lemma exists_le_le [has_le α] [is_directed α (≥ )] (a b : α) : ∃ c, c ≤ a ∧ c ≤ b :=
123
+ directed_of (≥ ) a b
124
124
125
- instance order_dual.is_directed_ge [has_le α] [is_directed α (≤)] : is_directed αᵒᵈ (swap (≤) ) :=
125
+ instance order_dual.is_directed_ge [has_le α] [is_directed α (≤)] : is_directed αᵒᵈ (≥ ) :=
126
126
by assumption
127
127
128
- instance order_dual.is_directed_le [has_le α] [is_directed α (swap (≤) )] : is_directed αᵒᵈ (≤) :=
128
+ instance order_dual.is_directed_le [has_le α] [is_directed α (≥ )] : is_directed αᵒᵈ (≤) :=
129
129
by assumption
130
130
131
131
section preorder
132
132
variables [preorder α] {a : α}
133
133
134
- protected lemma is_min.is_bot [is_directed α (swap (≤) )] (h : is_min a) : is_bot a :=
134
+ protected lemma is_min.is_bot [is_directed α (≥ )] (h : is_min a) : is_bot a :=
135
135
λ b, let ⟨c, hca, hcb⟩ := exists_le_le a b in (h hca).trans hcb
136
136
137
137
protected lemma is_max.is_top [is_directed α (≤)] (h : is_max a) : is_top a :=
138
- λ b, let ⟨c, hac, hbc⟩ := exists_ge_ge a b in hbc.trans $ h hac
138
+ h.to_dual.is_bot
139
139
140
140
lemma is_top_or_exists_gt [is_directed α (≤)] (a : α) : is_top a ∨ (∃ b, a < b) :=
141
141
(em (is_max a)).imp is_max.is_top not_is_max_iff.mp
142
142
143
- lemma is_bot_or_exists_lt [is_directed α (swap (≤) )] (a : α) : is_bot a ∨ (∃ b, b < a) :=
143
+ lemma is_bot_or_exists_lt [is_directed α (≥ )] (a : α) : is_bot a ∨ (∃ b, b < a) :=
144
144
@is_top_or_exists_gt αᵒᵈ _ _ a
145
145
146
- lemma is_bot_iff_is_min [is_directed α (swap (≤) )] : is_bot a ↔ is_min a :=
146
+ lemma is_bot_iff_is_min [is_directed α (≥ )] : is_bot a ↔ is_min a :=
147
147
⟨is_bot.is_min, is_min.is_bot⟩
148
148
149
149
lemma is_top_iff_is_max [is_directed α (≤)] : is_top a ↔ is_max a := ⟨is_top.is_max, is_max.is_top⟩
150
150
151
151
variables (β) [partial_order β]
152
152
153
- theorem exists_lt_of_directed_ge [is_directed β (swap (≤) )] [nontrivial β] : ∃ a b : β, a < b :=
153
+ theorem exists_lt_of_directed_ge [is_directed β (≥ )] [nontrivial β] : ∃ a b : β, a < b :=
154
154
begin
155
155
rcases exists_pair_ne β with ⟨a, b, hne⟩,
156
156
rcases is_bot_or_exists_lt a with ha|⟨c, hc⟩,
@@ -167,13 +167,13 @@ instance semilattice_sup.to_is_directed_le [semilattice_sup α] : is_directed α
167
167
⟨λ a b, ⟨a ⊔ b, le_sup_left, le_sup_right⟩⟩
168
168
169
169
@[priority 100 ] -- see Note [lower instance priority]
170
- instance semilattice_inf.to_is_directed_ge [semilattice_inf α] : is_directed α (swap (≤) ) :=
170
+ instance semilattice_inf.to_is_directed_ge [semilattice_inf α] : is_directed α (≥ ) :=
171
171
⟨λ a b, ⟨a ⊓ b, inf_le_left, inf_le_right⟩⟩
172
172
173
173
@[priority 100 ] -- see Note [lower instance priority]
174
174
instance order_top.to_is_directed_le [has_le α] [order_top α] : is_directed α (≤) :=
175
175
⟨λ a b, ⟨⊤, le_top, le_top⟩⟩
176
176
177
177
@[priority 100 ] -- see Note [lower instance priority]
178
- instance order_bot.to_is_directed_ge [has_le α] [order_bot α] : is_directed α (swap (≤) ) :=
178
+ instance order_bot.to_is_directed_ge [has_le α] [order_bot α] : is_directed α (≥ ) :=
179
179
⟨λ a b, ⟨⊥, bot_le, bot_le⟩⟩
0 commit comments