|
| 1 | +/- |
| 2 | +Copyright (c) 2017 Johannes Hölzl. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Johannes Hölzl |
| 5 | +
|
| 6 | +Measurable spaces -- σ-algberas |
| 7 | +-/ |
| 8 | +import data.set order.galois_connection |
| 9 | +open classical set lattice |
| 10 | +local attribute [instance] decidable_inhabited prop_decidable |
| 11 | + |
| 12 | +universes u v w x |
| 13 | + |
| 14 | +structure measurable_space (α : Type u) := |
| 15 | +(is_measurable : set α → Prop) |
| 16 | +(is_measurable_empty : is_measurable ∅) |
| 17 | +(is_measurable_compl : ∀s, is_measurable s → is_measurable (- s)) |
| 18 | +(is_measurable_Union : ∀f:ℕ → set α, (∀i, is_measurable (f i)) → is_measurable (⋃i, f i)) |
| 19 | + |
| 20 | +attribute [class] measurable_space |
| 21 | + |
| 22 | +variables {α : Type u} {β : Type v} {γ : Type w} {ι : Sort x} {s t u : set α} |
| 23 | + |
| 24 | +section |
| 25 | +variable [m : measurable_space α] |
| 26 | +include m |
| 27 | + |
| 28 | +def is_measurable : set α → Prop := m.is_measurable |
| 29 | +lemma is_measurable_empty : is_measurable (∅ : set α) := m.is_measurable_empty |
| 30 | +lemma is_measurable_compl : is_measurable s → is_measurable (-s) := |
| 31 | +m.is_measurable_compl s |
| 32 | +lemma is_measurable_Union {f : ℕ → set α} : (∀i, is_measurable (f i)) → is_measurable (⋃i, f i) := |
| 33 | +m.is_measurable_Union f |
| 34 | + |
| 35 | +end |
| 36 | + |
| 37 | +lemma measurable_space_eq : |
| 38 | + ∀{m₁ m₂ : measurable_space α}, (∀s:set α, m₁.is_measurable s ↔ m₂.is_measurable s) → m₁ = m₂ |
| 39 | +| ⟨s₁, _, _, _⟩ ⟨s₂, _, _, _⟩ h := |
| 40 | + have s₁ = s₂, from funext $ assume x, propext $ h x, |
| 41 | + by subst this |
| 42 | + |
| 43 | +namespace measurable_space |
| 44 | +section complete_lattice |
| 45 | + |
| 46 | +instance : partial_order (measurable_space α) := |
| 47 | +{ partial_order . |
| 48 | + le := λm₁ m₂, m₁.is_measurable ≤ m₂.is_measurable, |
| 49 | + le_refl := assume a b, le_refl _, |
| 50 | + le_trans := assume a b c, le_trans, |
| 51 | + le_antisymm := assume a b h₁ h₂, measurable_space_eq $ assume s, ⟨h₁ s, h₂ s⟩ } |
| 52 | + |
| 53 | +instance : has_top (measurable_space α) := |
| 54 | +⟨{measurable_space . |
| 55 | + is_measurable := λs, true, |
| 56 | + is_measurable_empty := trivial, |
| 57 | + is_measurable_compl := assume s hs, trivial, |
| 58 | + is_measurable_Union := assume f hf, trivial }⟩ |
| 59 | + |
| 60 | +instance : has_bot (measurable_space α) := |
| 61 | +⟨{measurable_space . |
| 62 | + is_measurable := λs, s = ∅ ∨ s = univ, |
| 63 | + is_measurable_empty := or.inl rfl, |
| 64 | + is_measurable_compl := by simp [or_imp_iff_and_imp] {contextual := tt}, |
| 65 | + is_measurable_Union := assume f hf, by_cases |
| 66 | + (assume h : ∃i, f i = univ, |
| 67 | + let ⟨i, hi⟩ := h in |
| 68 | + or.inr $ eq_univ_of_univ_subset $ hi ▸ le_supr f i) |
| 69 | + (assume h : ¬ ∃i, f i = univ, |
| 70 | + or.inl $ eq_empty_of_subset_empty $ Union_subset $ assume i, |
| 71 | + (hf i).elim (by simp {contextual := tt}) (assume hi, false.elim $ h ⟨i, hi⟩)) }⟩ |
| 72 | + |
| 73 | +instance : has_inf (measurable_space α) := |
| 74 | +⟨λm₁ m₂, {measurable_space . |
| 75 | + is_measurable := λs:set α, m₁.is_measurable s ∧ m₂.is_measurable s, |
| 76 | + is_measurable_empty := ⟨m₁.is_measurable_empty, m₂.is_measurable_empty⟩, |
| 77 | + is_measurable_compl := assume s ⟨h₁, h₂⟩, ⟨m₁.is_measurable_compl s h₁, m₂.is_measurable_compl s h₂⟩, |
| 78 | + is_measurable_Union := assume f hf, |
| 79 | + ⟨m₁.is_measurable_Union f (λi, (hf i).left), m₂.is_measurable_Union f (λi, (hf i).right)⟩ }⟩ |
| 80 | + |
| 81 | +instance : has_Inf (measurable_space α) := |
| 82 | +⟨λx, {measurable_space . |
| 83 | + is_measurable := λs:set α, ∀m:measurable_space α, m ∈ x → m.is_measurable s, |
| 84 | + is_measurable_empty := assume m hm, m.is_measurable_empty, |
| 85 | + is_measurable_compl := assume s hs m hm, m.is_measurable_compl s $ hs _ hm, |
| 86 | + is_measurable_Union := assume f hf m hm, m.is_measurable_Union f $ assume i, hf _ _ hm }⟩ |
| 87 | + |
| 88 | +protected lemma le_Inf {s : set (measurable_space α)} {m : measurable_space α} |
| 89 | + (h : ∀m'∈s, m ≤ m') : m ≤ Inf s := |
| 90 | +assume s hs m hm, h m hm s hs |
| 91 | + |
| 92 | +protected lemma Inf_le {s : set (measurable_space α)} {m : measurable_space α} |
| 93 | + (h : m ∈ s) : Inf s ≤ m := |
| 94 | +assume s hs, hs m h |
| 95 | + |
| 96 | +instance : complete_lattice (measurable_space α) := |
| 97 | +{ measurable_space.partial_order with |
| 98 | + sup := λa b, Inf {x | a ≤ x ∧ b ≤ x}, |
| 99 | + le_sup_left := assume a b, measurable_space.le_Inf $ assume x, assume h : a ≤ x ∧ b ≤ x, h.left, |
| 100 | + le_sup_right := assume a b, measurable_space.le_Inf $ assume x, assume h : a ≤ x ∧ b ≤ x, h.right, |
| 101 | + sup_le := assume a b c h₁ h₂, |
| 102 | + measurable_space.Inf_le $ show c ∈ {x | a ≤ x ∧ b ≤ x}, from ⟨h₁, h₂⟩, |
| 103 | + inf := (⊓), |
| 104 | + le_inf := assume a b h h₁ h₂ s hs, ⟨h₁ s hs, h₂ s hs⟩, |
| 105 | + inf_le_left := assume a b s ⟨h₁, h₂⟩, h₁, |
| 106 | + inf_le_right := assume a b s ⟨h₁, h₂⟩, h₂, |
| 107 | + top := ⊤, |
| 108 | + le_top := assume a t ht, trivial, |
| 109 | + bot := ⊥, |
| 110 | + bot_le := assume a s hs, hs.elim |
| 111 | + (assume h, h.symm ▸ a.is_measurable_empty) |
| 112 | + (assume h, begin rw [h, ←compl_empty], exact a.is_measurable_compl _ a.is_measurable_empty end), |
| 113 | + Sup := λtt, Inf {t | ∀t'∈tt, t' ≤ t}, |
| 114 | + le_Sup := assume s f h, measurable_space.le_Inf $ assume t ht, ht _ h, |
| 115 | + Sup_le := assume s f h, measurable_space.Inf_le $ assume t ht, h _ ht, |
| 116 | + Inf := Inf, |
| 117 | + le_Inf := assume s a, measurable_space.le_Inf, |
| 118 | + Inf_le := assume s a, measurable_space.Inf_le } |
| 119 | + |
| 120 | +instance : inhabited (measurable_space α) := ⟨⊤⟩ |
| 121 | + |
| 122 | +end complete_lattice |
| 123 | + |
| 124 | +section functors |
| 125 | +variables {m m₁ m₂ : measurable_space α} {m' : measurable_space β} {f : α → β} {g : β → α} |
| 126 | + |
| 127 | +protected def map (f : α → β) (m : measurable_space α) : measurable_space β := |
| 128 | +{measurable_space . |
| 129 | + is_measurable := λs, m.is_measurable $ f ⁻¹' s, |
| 130 | + is_measurable_empty := m.is_measurable_empty, |
| 131 | + is_measurable_compl := assume s hs, m.is_measurable_compl _ hs, |
| 132 | + is_measurable_Union := assume f hf, by rw [preimage_Union]; exact m.is_measurable_Union _ hf } |
| 133 | + |
| 134 | +@[simp] lemma map_id : m.map id = m := |
| 135 | +measurable_space_eq $ assume s, iff.refl _ |
| 136 | + |
| 137 | +@[simp] lemma map_comp {f : α → β} {g : β → γ} : (m.map f).map g = m.map (g ∘ f) := |
| 138 | +measurable_space_eq $ assume s, by refl |
| 139 | + |
| 140 | +protected def comap (f : α → β) (m : measurable_space β) : measurable_space α := |
| 141 | +{measurable_space . |
| 142 | + is_measurable := λs, ∃s', m.is_measurable s' ∧ s = f ⁻¹' s', |
| 143 | + is_measurable_empty := ⟨∅, m.is_measurable_empty, rfl⟩, |
| 144 | + is_measurable_compl := assume s ⟨s', h₁, h₂⟩, ⟨-s', m.is_measurable_compl _ h₁, h₂.symm ▸ rfl⟩, |
| 145 | + is_measurable_Union := assume s hs, |
| 146 | + let ⟨s', hs'⟩ := axiom_of_choice hs in |
| 147 | + have ∀i, s i = f ⁻¹' s' i, from assume i, (hs' i).right, |
| 148 | + ⟨⋃i, s' i, m.is_measurable_Union _ (λi, (hs' i).left), by simp [this] ⟩ } |
| 149 | + |
| 150 | +@[simp] lemma comap_id : m.comap id = m := |
| 151 | +measurable_space_eq $ assume s, ⟨assume ⟨s', hs', h⟩, h.symm ▸ hs', assume h, ⟨s, h, rfl⟩⟩ |
| 152 | + |
| 153 | +@[simp] lemma comap_comp {f : β → α} {g : γ → β} : (m.comap f).comap g = m.comap (f ∘ g) := |
| 154 | +measurable_space_eq $ assume s, |
| 155 | + ⟨assume ⟨t, ⟨u, h, hu⟩, ht⟩, ⟨u, h, ht.symm ▸ hu.symm ▸ rfl⟩, |
| 156 | + assume ⟨t, h, ht⟩, ⟨f ⁻¹' t, ⟨_, h, rfl⟩, ht⟩⟩ |
| 157 | + |
| 158 | +lemma comap_le_iff_le_map {f : α → β} : m'.comap f ≤ m ↔ m' ≤ m.map f := |
| 159 | +⟨assume h s hs, h _ ⟨_, hs, rfl⟩, assume h s ⟨t, ht, heq⟩, heq.symm ▸ h _ ht⟩ |
| 160 | + |
| 161 | +lemma gc_comap_map (f : α → β) : |
| 162 | + galois_connection (measurable_space.comap f) (measurable_space.map f) := |
| 163 | +assume f g, comap_le_iff_le_map |
| 164 | + |
| 165 | +lemma map_mono (h : m₁ ≤ m₂) : m₁.map f ≤ m₂.map f := (gc_comap_map f).monotone_u h |
| 166 | +lemma monotone_map : monotone (measurable_space.map f) := assume a b h, map_mono h |
| 167 | +lemma comap_mono (h : m₁ ≤ m₂) : m₁.comap g ≤ m₂.comap g := (gc_comap_map g).monotone_l h |
| 168 | +lemma monotone_comap : monotone (measurable_space.comap g) := assume a b h, comap_mono h |
| 169 | + |
| 170 | +@[simp] lemma comap_bot : (⊥:measurable_space α).comap g = ⊥ := (gc_comap_map g).l_bot |
| 171 | +@[simp] lemma comap_sup : (m₁ ⊔ m₂).comap g = m₁.comap g ⊔ m₂.comap g := (gc_comap_map g).l_sup |
| 172 | +@[simp] lemma comap_supr {m : ι → measurable_space α} :(⨆i, m i).comap g = (⨆i, (m i).comap g) := |
| 173 | +(gc_comap_map g).l_supr |
| 174 | + |
| 175 | +@[simp] lemma map_top : (⊤:measurable_space α).map f = ⊤ := (gc_comap_map f).u_top |
| 176 | +@[simp] lemma map_inf : (m₁ ⊓ m₂).map f = m₁.map f ⊓ m₂.map f := (gc_comap_map f).u_inf |
| 177 | +@[simp] lemma map_infi {m : ι → measurable_space α} : (⨅i, m i).map f = (⨅i, (m i).map f) := |
| 178 | +(gc_comap_map f).u_infi |
| 179 | + |
| 180 | +lemma comap_map_le : (m.map f).comap f ≤ m := (gc_comap_map f).decreasing_l_u _ |
| 181 | +lemma le_map_comap : m ≤ (m.comap g).map g := (gc_comap_map g).increasing_u_l _ |
| 182 | + |
| 183 | +end functors |
| 184 | + |
| 185 | +end measurable_space |
| 186 | + |
| 187 | +section measurable_functions |
| 188 | + |
| 189 | +def measurable [m₁ : measurable_space α] [m₂ : measurable_space β] {f : α → β} := m₂ ≤ m₁.map f |
| 190 | + |
| 191 | + |
| 192 | +end measurable_functions |
| 193 | + |
| 194 | +section constructions |
| 195 | + |
| 196 | +instance : measurable_space empty := ⊤ |
| 197 | +instance : measurable_space unit := ⊤ |
| 198 | +instance : measurable_space bool := ⊤ |
| 199 | +instance : measurable_space ℕ := ⊤ |
| 200 | +instance : measurable_space ℤ := ⊤ |
| 201 | + |
| 202 | +instance {p : α → Prop} [m : measurable_space α] : measurable_space (subtype p) := |
| 203 | +m.comap subtype.val |
| 204 | + |
| 205 | +instance [m₁ : measurable_space α] [m₂ : measurable_space β] : measurable_space (α × β) := |
| 206 | +m₁.comap prod.fst ⊔ m₂.comap prod.snd |
| 207 | + |
| 208 | +instance [m₁ : measurable_space α] [m₂ : measurable_space β] : measurable_space (α ⊕ β) := |
| 209 | +m₁.map sum.inl ⊓ m₂.map sum.inr |
| 210 | + |
| 211 | +instance {β : α → Type v} [m : Πa, measurable_space (β a)] : measurable_space (sigma β) := |
| 212 | +⨅a, (m a).map (sigma.mk a) |
| 213 | + |
| 214 | +end constructions |
0 commit comments