Skip to content
This repository was archived by the owner on Jul 24, 2024. It is now read-only.

Commit d790b4b

Browse files
committed
feat(set_theory/cardinal): lt_omega_of_fintype (#13365)
1 parent e18ea79 commit d790b4b

File tree

7 files changed

+11
-14
lines changed

7 files changed

+11
-14
lines changed

archive/100-theorems-list/82_cubing_a_cube.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -509,7 +509,7 @@ omit h
509509
/-- The infinite sequence of cubes contradicts the finiteness of the family. -/
510510
theorem not_correct : ¬correct cs :=
511511
begin
512-
intro h, apply not_le_of_lt (lt_omega_iff_fintype.mpr ⟨_inst_1⟩),
512+
intro h, apply (lt_omega_of_fintype ι).not_le,
513513
rw [omega, lift_id], fapply mk_le_of_injective, exact λ n, (sequence_of_cubes h n).1,
514514
intros n m hnm, apply strict_mono.injective (strict_mono_sequence_of_cubes h),
515515
dsimp only [decreasing_sequence], rw hnm

src/data/W/cardinal.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -69,7 +69,7 @@ calc cardinal.sum (λ a : α, m ^ #(β a))
6969
mul_le_mul' (le_max_left _ _) le_rfl
7070
... = m : mul_eq_left.{u} (le_max_right _ _)
7171
(cardinal.sup_le (λ i, begin
72-
cases lt_omega.1 (lt_omega_iff_fintype.2show fintype (β i), by apply_instance⟩) with n hn,
72+
cases lt_omega.1 (lt_omega_of_fintype (β i)) with n hn,
7373
rw [hn],
7474
exact power_nat_le (le_max_right _ _)
7575
end))

src/data/mv_polynomial/cardinal.lean

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -84,11 +84,8 @@ calc #(mv_polynomial_fun σ R) = #R + #σ + #(ulift bool) :
8484
... ≤ max (max (#R + #σ) (#(ulift bool))) ω : add_le_max _ _
8585
... ≤ max (max (max (max (#R) (#σ)) ω) (#(ulift bool))) ω :
8686
max_le_max (max_le_max (add_le_max _ _) le_rfl) le_rfl
87-
... ≤ _ : begin
88-
have : #(ulift.{u} bool) ≤ ω,
89-
from le_of_lt (lt_omega_iff_fintype.2 ⟨infer_instance⟩),
90-
simp only [max_comm omega.{u}, max_assoc, max_left_comm omega.{u}, max_self, max_eq_left this],
91-
end
87+
... ≤ _ : by simp only [max_comm omega.{u}, max_assoc, max_left_comm omega.{u}, max_self,
88+
max_eq_left (lt_omega_of_fintype (ulift.{u} bool)).le]
9289

9390
namespace mv_polynomial
9491

src/data/polynomial/cardinal.lean

Lines changed: 1 addition & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -22,9 +22,6 @@ lemma cardinal_mk_le_max {R : Type u} [comm_semiring R] : #R[X] ≤ max (#R) ω
2222
calc #R[X] = #(mv_polynomial punit.{u + 1} R) :
2323
cardinal.eq.2 ⟨(mv_polynomial.punit_alg_equiv.{u u} R).to_equiv.symm⟩
2424
... ≤ _ : mv_polynomial.cardinal_mk_le_max
25-
... ≤ _ : begin
26-
have : #(punit.{u + 1}) ≤ ω, from le_of_lt (lt_omega_iff_fintype.2 ⟨infer_instance⟩),
27-
rw [max_assoc, max_eq_right this]
28-
end
25+
... ≤ _ : by rw [max_assoc, max_eq_right (lt_omega_of_fintype punit).le]
2926

3027
end polynomial

src/field_theory/is_alg_closed/classification.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -192,9 +192,9 @@ begin
192192
from ring_hom.injective _) with t ht,
193193
have : #s = #t,
194194
{ rw [← cardinal_eq_cardinal_transcendence_basis_of_omega_lt _ hs
195-
(le_of_lt $ lt_omega_iff_fintype.2 ⟨infer_instance⟩) hK,
195+
(lt_omega_of_fintype (zmod p)).le hK,
196196
← cardinal_eq_cardinal_transcendence_basis_of_omega_lt _ ht
197-
(le_of_lt $ lt_omega_iff_fintype.2 ⟨infer_instance⟩), hKL],
197+
(lt_omega_of_fintype (zmod p)).le, hKL],
198198
rwa ← hKL },
199199
cases cardinal.eq.1 this with e,
200200
exact ⟨equiv_of_transcendence_basis _ _ e hs ht⟩

src/linear_algebra/finsupp_vector_space.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -199,7 +199,7 @@ lemma cardinal_lt_omega_of_finite_dimensional [fintype K] [finite_dimensional K
199199
begin
200200
letI : is_noetherian K V := is_noetherian.iff_fg.2 infer_instance,
201201
rw cardinal_mk_eq_cardinal_mk_field_pow_dim K V,
202-
exact cardinal.power_lt_omega (cardinal.lt_omega_iff_fintype.2 ⟨infer_instance⟩)
202+
exact cardinal.power_lt_omega (cardinal.lt_omega_of_fintype K)
203203
(is_noetherian.dim_lt_omega K V),
204204
end
205205

src/set_theory/cardinal.lean

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -918,6 +918,9 @@ lt_omega.trans ⟨λ ⟨n, e⟩, begin
918918
exact ⟨fintype.of_equiv _ f.symm⟩
919919
end, λ ⟨_⟩, by exactI ⟨_, mk_fintype _⟩⟩
920920

921+
theorem lt_omega_of_fintype (α : Type u) [fintype α] : #α < ω :=
922+
lt_omega_iff_fintype.2 ⟨infer_instance⟩
923+
921924
theorem lt_omega_iff_finite {α} {S : set α} : #S < ω ↔ finite S :=
922925
lt_omega_iff_fintype.trans finite_def.symm
923926

0 commit comments

Comments
 (0)