-
Notifications
You must be signed in to change notification settings - Fork 337
/
Normal.lean
410 lines (338 loc) · 18.8 KB
/
Normal.lean
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
/-
Copyright (c) 2020 Kenny Lau. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Kenny Lau, Thomas Browning, Patrick Lutz
-/
import Mathlib.FieldTheory.Extension
import Mathlib.FieldTheory.SplittingField.Construction
import Mathlib.GroupTheory.Solvable
/-!
# Normal field extensions
In this file we define normal field extensions and prove that for a finite extension, being normal
is the same as being a splitting field (`Normal.of_isSplittingField` and
`Normal.exists_isSplittingField`).
## Main Definitions
- `Normal F K` where `K` is a field extension of `F`.
-/
noncomputable section
open Polynomial IsScalarTower
variable (F K : Type*) [Field F] [Field K] [Algebra F K]
/-- Typeclass for normal field extension: `K` is a normal extension of `F` iff the minimal
polynomial of every element `x` in `K` splits in `K`, i.e. every conjugate of `x` is in `K`. -/
class Normal extends Algebra.IsAlgebraic F K : Prop where
splits' (x : K) : Splits (algebraMap F K) (minpoly F x)
variable {F K}
theorem Normal.isIntegral (_ : Normal F K) (x : K) : IsIntegral F x :=
Algebra.IsIntegral.isIntegral x
theorem Normal.splits (_ : Normal F K) (x : K) : Splits (algebraMap F K) (minpoly F x) :=
Normal.splits' x
theorem normal_iff : Normal F K ↔ ∀ x : K, IsIntegral F x ∧ Splits (algebraMap F K) (minpoly F x) :=
⟨fun h x => ⟨h.isIntegral x, h.splits x⟩, fun h =>
{ isAlgebraic := fun x => (h x).1.isAlgebraic
splits' := fun x => (h x).2 }⟩
theorem Normal.out : Normal F K → ∀ x : K, IsIntegral F x ∧ Splits (algebraMap F K) (minpoly F x) :=
normal_iff.1
variable (F K)
instance normal_self : Normal F F where
isAlgebraic := fun _ => isIntegral_algebraMap.isAlgebraic
splits' := fun x => (minpoly.eq_X_sub_C' x).symm ▸ splits_X_sub_C _
theorem Normal.exists_isSplittingField [h : Normal F K] [FiniteDimensional F K] :
∃ p : F[X], IsSplittingField F K p := by
classical
let s := Basis.ofVectorSpace F K
refine
⟨∏ x, minpoly F (s x), splits_prod _ fun x _ => h.splits (s x),
Subalgebra.toSubmodule.injective ?_⟩
rw [Algebra.top_toSubmodule, eq_top_iff, ← s.span_eq, Submodule.span_le, Set.range_subset_iff]
refine fun x =>
Algebra.subset_adjoin
(Multiset.mem_toFinset.mpr <|
(mem_roots <|
mt (Polynomial.map_eq_zero <| algebraMap F K).1 <|
Finset.prod_ne_zero_iff.2 fun x _ => ?_).2 ?_)
· exact minpoly.ne_zero (h.isIntegral (s x))
rw [IsRoot.def, eval_map, ← aeval_def, map_prod]
exact Finset.prod_eq_zero (Finset.mem_univ _) (minpoly.aeval _ _)
section NormalTower
variable (E : Type*) [Field E] [Algebra F E] [Algebra K E] [IsScalarTower F K E]
theorem Normal.tower_top_of_normal [h : Normal F E] : Normal K E :=
normal_iff.2 fun x => by
cases' h.out x with hx hhx
rw [algebraMap_eq F K E] at hhx
exact
⟨hx.tower_top,
Polynomial.splits_of_splits_of_dvd (algebraMap K E)
(Polynomial.map_ne_zero (minpoly.ne_zero hx))
((Polynomial.splits_map_iff (algebraMap F K) (algebraMap K E)).mpr hhx)
(minpoly.dvd_map_of_isScalarTower F K x)⟩
theorem AlgHom.normal_bijective [h : Normal F E] (ϕ : E →ₐ[F] K) : Function.Bijective ϕ :=
h.toIsAlgebraic.bijective_of_isScalarTower' ϕ
variable {E F}
variable {E' : Type*} [Field E'] [Algebra F E']
theorem Normal.of_algEquiv [h : Normal F E] (f : E ≃ₐ[F] E') : Normal F E' := by
rw [normal_iff] at h ⊢
intro x; specialize h (f.symm x)
rw [← f.apply_symm_apply x, minpoly.algEquiv_eq, ← f.toAlgHom.comp_algebraMap]
exact ⟨h.1.map f, splits_comp_of_splits _ _ h.2⟩
theorem AlgEquiv.transfer_normal (f : E ≃ₐ[F] E') : Normal F E ↔ Normal F E' :=
⟨fun _ ↦ Normal.of_algEquiv f, fun _ ↦ Normal.of_algEquiv f.symm⟩
open IntermediateField
theorem Normal.of_isSplittingField (p : F[X]) [hFEp : IsSplittingField F E p] : Normal F E := by
rcases eq_or_ne p 0 with (rfl | hp)
· have := hFEp.adjoin_rootSet
rw [rootSet_zero, Algebra.adjoin_empty] at this
exact Normal.of_algEquiv
(AlgEquiv.ofBijective (Algebra.ofId F E) (Algebra.bijective_algebraMap_iff.2 this.symm))
refine normal_iff.mpr fun x ↦ ?_
haveI : FiniteDimensional F E := IsSplittingField.finiteDimensional E p
have hx := IsIntegral.of_finite F x
let L := (p * minpoly F x).SplittingField
have hL := splits_of_splits_mul' _ ?_ (SplittingField.splits (p * minpoly F x))
· let j : E →ₐ[F] L := IsSplittingField.lift E p hL.1
refine ⟨hx, splits_of_comp _ (j : E →+* L) (j.comp_algebraMap ▸ hL.2) fun a ha ↦ ?_⟩
rw [j.comp_algebraMap] at ha
letI : Algebra F⟮x⟯ L := ((algHomAdjoinIntegralEquiv F hx).symm ⟨a, ha⟩).toRingHom.toAlgebra
let j' : E →ₐ[F⟮x⟯] L := IsSplittingField.lift E (p.map (algebraMap F F⟮x⟯)) ?_
· change a ∈ j.range
rw [← IsSplittingField.adjoin_rootSet_eq_range E p j,
IsSplittingField.adjoin_rootSet_eq_range E p (j'.restrictScalars F)]
exact ⟨x, (j'.commutes _).trans (algHomAdjoinIntegralEquiv_symm_apply_gen F hx _)⟩
· rw [splits_map_iff, ← IsScalarTower.algebraMap_eq]; exact hL.1
· rw [Polynomial.map_ne_zero_iff (algebraMap F L).injective, mul_ne_zero_iff]
exact ⟨hp, minpoly.ne_zero hx⟩
instance Polynomial.SplittingField.instNormal (p : F[X]) : Normal F p.SplittingField :=
Normal.of_isSplittingField p
end NormalTower
namespace IntermediateField
/-- A compositum of normal extensions is normal -/
instance normal_iSup {ι : Type*} (t : ι → IntermediateField F K) [h : ∀ i, Normal F (t i)] :
Normal F (⨆ i, t i : IntermediateField F K) := by
refine { toIsAlgebraic := isAlgebraic_iSup fun i => (h i).1, splits' := fun x => ?_ }
obtain ⟨s, hx⟩ := exists_finset_of_mem_supr'' (fun i => (h i).1) x.2
let E : IntermediateField F K := ⨆ i ∈ s, adjoin F ((minpoly F (i.2 : _)).rootSet K)
have hF : Normal F E := by
haveI : IsSplittingField F E (∏ i ∈ s, minpoly F i.snd) := by
refine isSplittingField_iSup ?_ fun i _ => adjoin_rootSet_isSplittingField ?_
· exact Finset.prod_ne_zero_iff.mpr fun i _ => minpoly.ne_zero ((h i.1).isIntegral i.2)
· exact Polynomial.splits_comp_of_splits _ (algebraMap (t i.1) K) ((h i.1).splits i.2)
apply Normal.of_isSplittingField (∏ i ∈ s, minpoly F i.2)
have hE : E ≤ ⨆ i, t i := by
refine iSup_le fun i => iSup_le fun _ => le_iSup_of_le i.1 ?_
rw [adjoin_le_iff, ← image_rootSet ((h i.1).splits i.2) (t i.1).val]
exact fun _ ⟨a, _, h⟩ => h ▸ a.2
have := hF.splits ⟨x, hx⟩
rw [minpoly_eq, Subtype.coe_mk, ← minpoly_eq] at this
exact Polynomial.splits_comp_of_splits _ (inclusion hE).toRingHom this
/-- If a set of algebraic elements in a field extension `K/F` have minimal polynomials that
split in another extension `L/F`, then all minimal polynomials in the intermediate field
generated by the set also split in `L/F`. -/
theorem splits_of_mem_adjoin {L} [Field L] [Algebra F L] {S : Set K}
(splits : ∀ x ∈ S, IsIntegral F x ∧ (minpoly F x).Splits (algebraMap F L)) {x : K}
(hx : x ∈ adjoin F S) : (minpoly F x).Splits (algebraMap F L) := by
let E : IntermediateField F L := ⨆ x : S, adjoin F ((minpoly F x.val).rootSet L)
have normal : Normal F E := normal_iSup (h := fun x ↦
Normal.of_isSplittingField (hFEp := adjoin_rootSet_isSplittingField (splits x x.2).2))
have : ∀ x ∈ S, (minpoly F x).Splits (algebraMap F E) := fun x hx ↦ splits_of_splits
(splits x hx).2 fun y hy ↦ (le_iSup _ ⟨x, hx⟩ : _ ≤ E) (subset_adjoin F _ <| by exact hy)
obtain ⟨φ⟩ := nonempty_algHom_adjoin_of_splits fun x hx ↦ ⟨(splits x hx).1, this x hx⟩
convert splits_comp_of_splits _ E.val.toRingHom (normal.splits <| φ ⟨x, hx⟩)
rw [minpoly.algHom_eq _ φ.injective, ← minpoly.algHom_eq _ (adjoin F S).val.injective, val_mk]
instance normal_sup
(E E' : IntermediateField F K) [Normal F E] [Normal F E'] :
Normal F (E ⊔ E' : IntermediateField F K) :=
iSup_bool_eq (f := Bool.rec E' E) ▸ normal_iSup (h := by rintro (_|_) <;> infer_instance)
/-- An intersection of normal extensions is normal -/
instance normal_iInf {ι : Type*} [hι : Nonempty ι]
(t : ι → IntermediateField F K) [h : ∀ i, Normal F (t i)] :
Normal F (⨅ i, t i : IntermediateField F K) := by
refine { toIsAlgebraic := ?_, splits' := fun x => ?_ }
· let f := inclusion (iInf_le t hι.some)
exact Algebra.IsAlgebraic.of_injective f f.injective
· have hx : ∀ i, Splits (algebraMap F (t i)) (minpoly F x) := by
intro i
rw [← minpoly.algHom_eq (inclusion (iInf_le t i)) (inclusion (iInf_le t i)).injective]
exact (h i).splits' (inclusion (iInf_le t i) x)
simp only [splits_iff_mem (splits_of_isScalarTower K (hx hι.some))] at hx ⊢
rintro y hy - ⟨-, ⟨i, rfl⟩, rfl⟩
exact hx i y hy
instance normal_inf
(E E' : IntermediateField F K) [Normal F E] [Normal F E'] :
Normal F (E ⊓ E' : IntermediateField F K) :=
iInf_bool_eq (f := Bool.rec E' E) ▸ normal_iInf (h := by rintro (_|_) <;> infer_instance)
variable {F K}
variable {L : Type*} [Field L] [Algebra F L] [Algebra K L] [IsScalarTower F K L]
@[simp]
theorem restrictScalars_normal {E : IntermediateField K L} :
Normal F (E.restrictScalars F) ↔ Normal F E :=
Iff.rfl
end IntermediateField
variable {F} {K}
variable {K₁ K₂ K₃ : Type*} [Field K₁] [Field K₂] [Field K₃] [Algebra F K₁]
[Algebra F K₂] [Algebra F K₃] (ϕ : K₁ →ₐ[F] K₂) (χ : K₁ ≃ₐ[F] K₂) (ψ : K₂ →ₐ[F] K₃)
(ω : K₂ ≃ₐ[F] K₃)
section Restrict
variable (E : Type*) [Field E] [Algebra F E] [Algebra E K₁] [Algebra E K₂] [Algebra E K₃]
[IsScalarTower F E K₁] [IsScalarTower F E K₂] [IsScalarTower F E K₃]
/-- Restrict algebra homomorphism to image of normal subfield -/
def AlgHom.restrictNormalAux [h : Normal F E] :
(toAlgHom F E K₁).range →ₐ[F] (toAlgHom F E K₂).range where
toFun x :=
⟨ϕ x, by
suffices (toAlgHom F E K₁).range.map ϕ ≤ _ by exact this ⟨x, Subtype.mem x, rfl⟩
rintro x ⟨y, ⟨z, hy⟩, hx⟩
rw [← hx, ← hy]
apply minpoly.mem_range_of_degree_eq_one E
refine
Or.resolve_left (h.splits z).def (minpoly.ne_zero (h.isIntegral z)) (minpoly.irreducible ?_)
(minpoly.dvd E _ (by simp [aeval_algHom_apply]))
simp only [AlgHom.toRingHom_eq_coe, AlgHom.coe_toRingHom]
suffices IsIntegral F _ by exact this.tower_top
exact ((h.isIntegral z).map <| toAlgHom F E K₁).map ϕ⟩
map_zero' := Subtype.ext (map_zero _)
map_one' := Subtype.ext (map_one _)
map_add' x y := Subtype.ext <| by simp
map_mul' x y := Subtype.ext <| by simp
commutes' x := Subtype.ext (ϕ.commutes x)
/-- Restrict algebra homomorphism to normal subfield -/
def AlgHom.restrictNormal [Normal F E] : E →ₐ[F] E :=
((AlgEquiv.ofInjectiveField (IsScalarTower.toAlgHom F E K₂)).symm.toAlgHom.comp
(ϕ.restrictNormalAux E)).comp
(AlgEquiv.ofInjectiveField (IsScalarTower.toAlgHom F E K₁)).toAlgHom
/-- Restrict algebra homomorphism to normal subfield (`AlgEquiv` version) -/
def AlgHom.restrictNormal' [Normal F E] : E ≃ₐ[F] E :=
AlgEquiv.ofBijective (AlgHom.restrictNormal ϕ E) (AlgHom.normal_bijective F E E _)
@[simp]
theorem AlgHom.restrictNormal_commutes [Normal F E] (x : E) :
algebraMap E K₂ (ϕ.restrictNormal E x) = ϕ (algebraMap E K₁ x) :=
Subtype.ext_iff.mp
(AlgEquiv.apply_symm_apply (AlgEquiv.ofInjectiveField (IsScalarTower.toAlgHom F E K₂))
(ϕ.restrictNormalAux E ⟨IsScalarTower.toAlgHom F E K₁ x, x, rfl⟩))
theorem AlgHom.restrictNormal_comp [Normal F E] :
(ψ.restrictNormal E).comp (ϕ.restrictNormal E) = (ψ.comp ϕ).restrictNormal E :=
AlgHom.ext fun _ =>
(algebraMap E K₃).injective (by simp only [AlgHom.comp_apply, AlgHom.restrictNormal_commutes])
theorem AlgHom.fieldRange_of_normal {E : IntermediateField F K} [Normal F E]
(f : E →ₐ[F] K) : f.fieldRange = E := by
let g := f.restrictNormal' E
rw [← show E.val.comp ↑g = f from DFunLike.ext_iff.mpr (f.restrictNormal_commutes E),
← AlgHom.map_fieldRange, AlgEquiv.fieldRange_eq_top g, ← AlgHom.fieldRange_eq_map,
IntermediateField.fieldRange_val]
/-- Restrict algebra isomorphism to a normal subfield -/
def AlgEquiv.restrictNormal [Normal F E] : E ≃ₐ[F] E :=
AlgHom.restrictNormal' χ.toAlgHom E
@[simp]
theorem AlgEquiv.restrictNormal_commutes [Normal F E] (x : E) :
algebraMap E K₂ (χ.restrictNormal E x) = χ (algebraMap E K₁ x) :=
χ.toAlgHom.restrictNormal_commutes E x
theorem AlgEquiv.restrictNormal_trans [Normal F E] :
(χ.trans ω).restrictNormal E = (χ.restrictNormal E).trans (ω.restrictNormal E) :=
AlgEquiv.ext fun _ =>
(algebraMap E K₃).injective
(by simp only [AlgEquiv.trans_apply, AlgEquiv.restrictNormal_commutes])
/-- Restriction to a normal subfield as a group homomorphism -/
def AlgEquiv.restrictNormalHom [Normal F E] : (K₁ ≃ₐ[F] K₁) →* E ≃ₐ[F] E :=
MonoidHom.mk' (fun χ => χ.restrictNormal E) fun ω χ => χ.restrictNormal_trans ω E
variable (F K₁)
/-- If `K₁/E/F` is a tower of fields with `E/F` normal then `AlgHom.restrictNormal'` is an
equivalence. -/
@[simps]
def Normal.algHomEquivAut [Normal F E] : (E →ₐ[F] K₁) ≃ E ≃ₐ[F] E where
toFun σ := AlgHom.restrictNormal' σ E
invFun σ := (IsScalarTower.toAlgHom F E K₁).comp σ.toAlgHom
left_inv σ := by
ext
simp [AlgHom.restrictNormal']
right_inv σ := by
ext
simp only [AlgHom.restrictNormal', AlgEquiv.toAlgHom_eq_coe, AlgEquiv.coe_ofBijective]
apply NoZeroSMulDivisors.algebraMap_injective E K₁
rw [AlgHom.restrictNormal_commutes]
simp
end Restrict
section lift
variable (E : Type*) [Field E] [Algebra F E] [Algebra K₁ E] [Algebra K₂ E] [IsScalarTower F K₁ E]
[IsScalarTower F K₂ E]
/-- If `E/Kᵢ/F` are towers of fields with `E/F` normal then we can lift
an algebra homomorphism `ϕ : K₁ →ₐ[F] K₂` to `ϕ.liftNormal E : E →ₐ[F] E`. -/
noncomputable def AlgHom.liftNormal [h : Normal F E] : E →ₐ[F] E :=
@AlgHom.restrictScalars F K₁ E E _ _ _ _ _ _
((IsScalarTower.toAlgHom F K₂ E).comp ϕ).toRingHom.toAlgebra _ _ _ _ <|
Nonempty.some <|
@IntermediateField.nonempty_algHom_of_adjoin_splits _ _ _ _ _ _ _
((IsScalarTower.toAlgHom F K₂ E).comp ϕ).toRingHom.toAlgebra _
(fun x _ ↦ ⟨(h.out x).1.tower_top,
splits_of_splits_of_dvd _ (map_ne_zero (minpoly.ne_zero (h.out x).1))
-- Porting note: had to override typeclass inference below using `(_)`
(by rw [splits_map_iff, ← @IsScalarTower.algebraMap_eq _ _ _ _ _ _ (_) (_) (_)]
exact (h.out x).2)
(minpoly.dvd_map_of_isScalarTower F K₁ x)⟩)
(IntermediateField.adjoin_univ _ _)
@[simp]
theorem AlgHom.liftNormal_commutes [Normal F E] (x : K₁) :
ϕ.liftNormal E (algebraMap K₁ E x) = algebraMap K₂ E (ϕ x) :=
-- Porting note: This seems to have been some sort of typeclass override trickery using `by apply`
-- Now we explicitly specify which typeclass to override, using `(_)` instead of `_`
@AlgHom.commutes K₁ E E _ _ _ _ (_) _ _
@[simp]
theorem AlgHom.restrict_liftNormal (ϕ : K₁ →ₐ[F] K₁) [Normal F K₁] [Normal F E] :
(ϕ.liftNormal E).restrictNormal K₁ = ϕ :=
AlgHom.ext fun x =>
(algebraMap K₁ E).injective
(Eq.trans (AlgHom.restrictNormal_commutes _ K₁ x) (ϕ.liftNormal_commutes E x))
/-- If `E/Kᵢ/F` are towers of fields with `E/F` normal then we can lift
an algebra isomorphism `ϕ : K₁ ≃ₐ[F] K₂` to `ϕ.liftNormal E : E ≃ₐ[F] E`. -/
noncomputable def AlgEquiv.liftNormal [Normal F E] : E ≃ₐ[F] E :=
AlgEquiv.ofBijective (χ.toAlgHom.liftNormal E) (AlgHom.normal_bijective F E E _)
@[simp]
theorem AlgEquiv.liftNormal_commutes [Normal F E] (x : K₁) :
χ.liftNormal E (algebraMap K₁ E x) = algebraMap K₂ E (χ x) :=
χ.toAlgHom.liftNormal_commutes E x
@[simp]
theorem AlgEquiv.restrict_liftNormal (χ : K₁ ≃ₐ[F] K₁) [Normal F K₁] [Normal F E] :
(χ.liftNormal E).restrictNormal K₁ = χ :=
AlgEquiv.ext fun x =>
(algebraMap K₁ E).injective
(Eq.trans (AlgEquiv.restrictNormal_commutes _ K₁ x) (χ.liftNormal_commutes E x))
theorem AlgEquiv.restrictNormalHom_surjective [Normal F K₁] [Normal F E] :
Function.Surjective (AlgEquiv.restrictNormalHom K₁ : (E ≃ₐ[F] E) → K₁ ≃ₐ[F] K₁) := fun χ =>
⟨χ.liftNormal E, χ.restrict_liftNormal E⟩
open IntermediateField in
theorem Normal.minpoly_eq_iff_mem_orbit [h : Normal F E] {x y : E} :
minpoly F x = minpoly F y ↔ x ∈ MulAction.orbit (E ≃ₐ[F] E) y := by
refine ⟨fun he ↦ ?_, fun ⟨f, he⟩ ↦ he ▸ minpoly.algEquiv_eq f y⟩
obtain ⟨φ, hφ⟩ := exists_algHom_of_splits_of_aeval (normal_iff.mp h) (he ▸ minpoly.aeval F x)
exact ⟨AlgEquiv.ofBijective φ (φ.normal_bijective F E E), hφ⟩
variable (F K₁)
theorem isSolvable_of_isScalarTower [Normal F K₁] [h1 : IsSolvable (K₁ ≃ₐ[F] K₁)]
[h2 : IsSolvable (E ≃ₐ[K₁] E)] : IsSolvable (E ≃ₐ[F] E) := by
let f : (E ≃ₐ[K₁] E) →* E ≃ₐ[F] E :=
{ toFun := fun ϕ =>
AlgEquiv.ofAlgHom (ϕ.toAlgHom.restrictScalars F) (ϕ.symm.toAlgHom.restrictScalars F)
(AlgHom.ext fun x => ϕ.apply_symm_apply x) (AlgHom.ext fun x => ϕ.symm_apply_apply x)
map_one' := AlgEquiv.ext fun _ => rfl
map_mul' := fun _ _ => AlgEquiv.ext fun _ => rfl }
refine
solvable_of_ker_le_range f (AlgEquiv.restrictNormalHom K₁) fun ϕ hϕ =>
⟨{ ϕ with commutes' := fun x => ?_ }, AlgEquiv.ext fun _ => rfl⟩
exact Eq.trans (ϕ.restrictNormal_commutes K₁ x).symm (congr_arg _ (AlgEquiv.ext_iff.mp hϕ x))
end lift
namespace minpoly
variable {K L : Type _} [Field K] [Field L] [Algebra K L]
open AlgEquiv IntermediateField
/-- If `x : L` is a root of `minpoly K y`, then we can find `(σ : L ≃ₐ[K] L)` with `σ x = y`.
That is, `x` and `y` are Galois conjugates. -/
theorem exists_algEquiv_of_root [Normal K L] {x y : L} (hy : IsAlgebraic K y)
(h_ev : (Polynomial.aeval x) (minpoly K y) = 0) : ∃ σ : L ≃ₐ[K] L, σ x = y := by
have hx : IsAlgebraic K x := ⟨minpoly K y, ne_zero hy.isIntegral, h_ev⟩
set f : K⟮x⟯ ≃ₐ[K] K⟮y⟯ := algEquiv hx (eq_of_root hy h_ev)
have hxy : (liftNormal f L) ((algebraMap (↥K⟮x⟯) L) (AdjoinSimple.gen K x)) = y := by
rw [liftNormal_commutes f L, algEquiv_apply, AdjoinSimple.algebraMap_gen K y]
exact ⟨(liftNormal f L), hxy⟩
/-- If `x : L` is a root of `minpoly K y`, then we can find `(σ : L ≃ₐ[K] L)` with `σ y = x`.
That is, `x` and `y` are Galois conjugates. -/
theorem exists_algEquiv_of_root' [Normal K L]{x y : L} (hy : IsAlgebraic K y)
(h_ev : (Polynomial.aeval x) (minpoly K y) = 0) : ∃ σ : L ≃ₐ[K] L, σ y = x := by
obtain ⟨σ, hσ⟩ := exists_algEquiv_of_root hy h_ev
use σ.symm
rw [← hσ, symm_apply_apply]
end minpoly