A PyTorch implementation of UM based on AAAI 2021 paper Weakly-supervised Temporal Action Localization by Uncertainty Modeling.
conda install pytorch=1.10.0 torchvision cudatoolkit=11.3 -c pytorch
pip install git+https://github.com/open-mmlab/mim.git
mim install mmaction2
THUMOS 14 and
ActivityNet datasets are used in this repo, you could download these datasets
from official websites. The I3D features of THUMOS 14
dataset can be downloaded from
Google Drive, I3D features
of ActivityNet 1.2
dataset can be downloaded from
OneDrive
, I3D features of ActivityNet 1.3
dataset can be downloaded
from Google Drive. The data
directory structure is shown as follows:
├── thumos14 | ├── activitynet
├── features | ├── features_1.2
├── val | ├── train
├── flow | ├── flow
├── video_validation_0000051.npy | ├── v___dXUJsj3yo.npy
└── ... | └── ...
├── rgb (same structure as flow) | ├── rgb
├── test | ├── v___dXUJsj3yo.npy
├── flow | └── ...
├── video_test_0000004.npy | ├── val (same structure as tain)
└── ... | ├── features_1.3 (same structure as features_1.2)
├── rgb (same structure as flow) | ├── videos
├── videos | ├── train
├── val | ├── v___c8enCfzqw.mp4
├── video_validation_0000051.mp4 | └──...
└──... | ├── val
├── test | ├── v__1vYKA7mNLI.mp4
├──video_test_0000004.mp4 | └──...
└──... | annotations_1.2.json
annotations.json | annotations_1.3.json
You can easily train and test the model by running the script below. If you want to try other options, please refer to
utils.py
.
python train.py --data_name activitynet1.2 --num_segments 50 --seed 0 --scale 16
python test.py --model_file --data_name thumos14 --model_file result/thumos14_model.pth
The models are trained on one NVIDIA GeForce GTX 1080 Ti GPU (11G). All the hyper-parameters are the default values according to the papers.
Method | THUMOS14 | Download | |||||||
---|---|---|---|---|---|---|---|---|---|
mAP@0.1 | mAP@0.2 | mAP@0.3 | mAP@0.4 | mAP@0.5 | mAP@0.6 | mAP@0.7 | mAP@AVG | ||
Ours | 60.3 | 54.3 | 45.7 | 37.2 | 27.8 | 18.2 | 9.2 | 36.1 | kb79 |
Official | 67.5 | 61.2 | 52.3 | 43.4 | 33.7 | 22.9 | 12.1 | 41.9 | - |
mAP@AVG is the average mAP under the thresholds 0.1:0.1:0.7.
Method | ActivityNet 1.2 | ActivityNet 1.3 | Download | ||||||
---|---|---|---|---|---|---|---|---|---|
mAP@0.5 | mAP@0.75 | mAP@0.95 | mAP@AVG | mAP@0.5 | mAP@0.75 | mAP@0.95 | mAP@AVG | ||
Ours | 1.7 | 0.5 | 0.0 | 0.7 | 0.1 | 0.1 | 0.0 | 0.1 | wexe |
Official | 41.2 | 25.6 | 6.0 | 25.9 | 37.0 | 23.9 | 5.7 | 23.7 | - |
mAP@AVG is the average mAP under the thresholds 0.5:0.05:0.95.
This repo is built upon the repo WTAL-Uncertainty-Modeling.